精英家教网 > 高中数学 > 题目详情

【题目】数列满足:

()判断的大小关系,并证明你的结论;

()求证: .

【答案】(1)当n为奇数时, ,即<;当n为偶数时, >;(2)见解析.

【解析】试题分析:() 分当为奇数时和当n为偶数时两种情况,将2作差,变形即可判断的大小关系;
() 要证

只需证,验证可知当时,当时不等式成立,

为偶数且时,

要证,只需证,即证

,则单调递减,即可证明;

为奇数且时,要证,只需证

只需证,即证,令,讨论单调性即可证明.

试题解析:Ⅰ) 当n为奇数时, <;当n为偶数时, >. 证明如下:

两边同取倒数得:

所以数列是以为首项, 为公比的等比数列, ,所以当n为奇数时,

,即<;当n为偶数时, >.

(Ⅱ)证明:因为

要证

只需证

时, 成立,当时, 成立,

为偶数且时,

要证

只需证,即证

,则单调递减,

为奇数且时,

要证

只需证

只需证

即证,令

单调递减,

所以成立,

所以成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数及函数

(1)若,求的单调区间;

(2)设集合,使上恒成立的的取值范围记作集合,求证: 的真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面

(1)求直线与平面所成角的正弦值;

(2)若动点在底面边界及内部,二面角的余弦值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.

(Ⅰ)求点的轨迹方程;

(Ⅱ)设点的轨迹为曲线,抛物线 的焦点为. 是过点互相垂直的两条直线,直线与曲线交于 两点,直线与曲线交于 两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

(1)若直线为曲线的一条切线,求实数的值;

(2)若函数在区间上为单调函数,求实数的取值范围;

(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 平面,底面中, ,且 的中点.

(1)求证:平面平面

(2)问在棱上是否存在点,使平面,若存在,请求出二面角的余弦值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.

(1)求椭圆的标准方程;

(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

查看答案和解析>>

同步练习册答案