精英家教网 > 高中数学 > 题目详情

【题目】已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第局得分()的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.

(1)求在一局游戏中得3分的概率;

(2)求游戏结束时局数的分布列和数学期望.

【答案】(1)(2)

【解析】试题分析:(1)在一局游戏中得3分只有白球、红球和黄球各1个,根据组合知识可得总事件数为,白球、红球和黄球各1个事件数为,最后根据古典概型概率公式求概率,(2)先确定随机变量可能取法:1,2,3,4.再求对应事件概率: 对应两白一红; 对应在不成立条件下第二次得分为2分,即第二次对应一黄二白或一白二红,其它同理,列出表格得分布列,最后根据数学期望公式求期望.

试题解析:解:(1)设在一局游戏中得3分为事件

.

答:在一局游戏中得3分的概率为.

(2)的所有可能取值为1,2,3,4.

在一局游戏中得2分的概率为

.

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,直线AB的方程为3x﹣2y﹣1=0,直线AC的方程为2x+3y﹣18=0.直线BC的方程为3x+4y﹣m=0(m≠25).
(1)求证:△ABC为直角三角形;
(2)当△ABC的BC边上的高为1时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知内角ABC所对的边分别为abc,向量m=(2sin B,- ),n,且mn.

(1)求锐角B的大小;

(2)如果b=2,求△ABC的面积SABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如表:

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

根据上表可得回归方程 = x+ 中的 为9.4,据此模型预报广告费用为6万元时销售额为(
A.63.6万元
B.67.7万元
C.65.5万元
D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点为,左准线方程为.

(1)求椭圆的标准方程;

(2)已知直线交椭圆 两点.

①若直线经过椭圆的左焦点,交轴于点,且满足 .求证: 为定值;

②若为原点),求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足a35a10=-9.

(1){an}的通项公式;

(2){an}的前n项和Sn及使得Sn最大的序号n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是全称命题还是存在性命题,并判断其真假:

(1)对任意x∈R,zx>0(z>0);

(2)对任意非零实数x1x2,若x1x2,则

(3)α∈R,使得sin(α)=sin α

(4)x∈R,使得x2+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点到坐标原点的距离和它到直线的距离之比是一个常数

(1)求点的轨迹;

(2)若时得到的曲线是,将曲线向左平移一个单位长度后得到曲线,过点的直线与曲线交于不同的两点,过的直线分别交曲线于点,设 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆.

(1)若椭圆的右焦点坐标为,求的值;

(2)由椭圆上不同三点构成三角形称为椭圆的内接三角形.若以为直角顶点的椭圆的内接等腰直角三角形恰有三个,求的取值范围.

查看答案和解析>>

同步练习册答案