精英家教网 > 高中数学 > 题目详情
如图,直三棱柱中,
中点,上一点,且.
(1)当时,求证:平面
(2)若直线与平面所成的角为,求的值.
(1)详见解析;(2) .

试题分析:由于两两互相垂直,故可以为坐标轴建立空间直角坐标系,然后利用空间向量求解.(1)建立空间直角坐标系如图所示,求出向量,再数量积,只要它们的数量积等于0即可.(2)首先求出平面的一个法向量,由直线与平面所成角的公式及题设可得,解这个方程即得.

试题解析:(1)建立空间直角坐标系如图所示,则


              3分
 
平面;    6分
(2)由题知

平面的一个法向量为    9分

  解得.    13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1
A1C1的中点.
(1)求证:CB1⊥平面ABC1
(2)求证:MN//平面ABC1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面分别为中点,
(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥,底面为菱形,
平面分别是的中点.
(1)证明:
(2)若上的动点,与平面所成最大角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在四棱锥中,底面是正方形,,点上,且.

(1)求证:平面;   
(2)求二面角的余弦值;
(3)证明:在线段上存在点,使∥平面,并求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱台中,底面是平行四边形,平面.

(1)证明:平面
(2)证明:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为__________________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给岀四个命题:
(1)若一个角的两边分别平行于另一个角的两边,则这两个角相等;
(2)a,b为两个不同平面,直线aÌa,直线bÌa,且a∥b,b∥b,则a∥b;
(3)a,b为两个不同平面,直线m⊥a,m⊥b,则a∥b;
(4)a,b为两个不同平面,直线m∥a,m∥b,则a∥b .
其中正确的是(   )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

同步练习册答案