精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若数学公式>0恒成立,则a∈[0,3); 
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有数学公式<f(数学公式); 
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有________(只填相应的序号)

解:对于(1)当a=3时,函数f(x)=,函数f(x)的值域为{3}∪[0,+∞),故错;
(2)对于任意的x1,x2∈R,且x1≠x2,若>0恒成立,说明曲线上任意两点连线的斜率大于0,对于x≤0 时,射线y=(3-a)x-a的斜率3-a>0,则a<3,又当a<0时,分段函数的图象如图所示,图象上有两点的连线的斜率小于0,不符合题意.故a∈[0,3); 正确;
对于(3)对于任意的x1,x2∈(0,+∞),且x1≠x2
由于三次函数的图象是下凸的,如图,利用梯形的中位线性质,得:
>f();故(3)不正确;
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,由三次函数的图象可知,对于其图象上任意两点的斜率的绝对值>0,不等式恒成立,则t≤0,则若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.正确.
故答案为:(2)(4).
分析:对于(1)当特殊值a=3时,函数f(x)=,函数f(x)的值域为{3}∪[0,+∞);(2)对于任意的x1,x2∈R,且x1≠x2,若>0恒成立,说明曲线上任意两点连线的斜率大于0,得出a的取值范围;对于(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,由于三次函数的图象是下凸的;(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,由三次函数的图象可知,对于其图象上任意两点的斜率的绝对值>0,利用不等式恒成立求得t的最大值.
点评:本小题主要考查函数单调性的性质、命题的真假判断与应用、函数的最值及其几何意义等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案