精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率分别为椭圆的长轴和短轴的端点,中点,为坐标原点,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,求面积最大时,直线的方程.
(1);(2)直线的方程为.

试题分析:(1)利用椭圆的性质,弦长可得,由此可求,故椭圆的方程为
(2)根据直线与椭圆的位置关系,设直线的方程为,联立方程得,所以可写出
,则,则,其中,易证单调减,当时,的最大值为.所以,此时,直线的方程为.
(1)∵①                    2分

    ②,
∴由①②得
∴椭圆的方程为                    4分
(2)设直线的方程为

                   7分



,则
,其中
易证单调减,当时,的最大值为         10分

此时,直线的方程为        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率为,其左焦点到点的距离为
(1) 求椭圆的标准方程;
(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:)的左焦点为,离心率为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的焦点在x轴上,左右顶点分别为,上顶点为B,抛物线分别以A,B为焦点,其顶点均为坐标原点O,相交于直线上一点P.
(1)求椭圆C及抛物线的方程;
(2)若动直线与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

F1,F2是椭圆=1的左、右两焦点,P为椭圆的一个顶点,若△PF1F2是等边三角形,则a2=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率是,则的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左右焦点,上一点且轴垂直,直线的另一个交点为
(1)若直线的斜率为,求的离心率;
(2)若直线轴上的截距为,且,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C过点,两焦点为是坐标原点,不经过原点的直线与该椭圆交于两个不同点,且直线的斜率依次成等比数列.
(1)求椭圆C的方程;       
(2)求直线的斜率
(3)求面积的范围.

查看答案和解析>>

同步练习册答案