精英家教网 > 高中数学 > 题目详情

【题目】设椭圆C:的左、右焦点分别为,上顶点为A,在x轴负半轴上有一点B,满足为线段的中点,且AB

(I)求椭圆C的离心率;

(II)若过A、B、三点的圆与直线相切,求椭圆C的方程;

(III)在(I)的条件下,过右焦点作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由。

【答案】;(;(

【解析】分析:由题意可得在在直角三角形中有整理可得由题意可得过A、B、F2三点的圆的圆心为F1(-c,0),半径r=

=2c,根据直线与圆相切可得,解得c=1,从而,可得椭圆的方程.由条件可设直线MN的方程为,与椭圆方程联立消元后得到一元二次方程,结合根据系数的关系可得MN的中点Q的坐标为,若以PM,PN为邻边的平行四边形是菱形,则,由此得到,整理得最后可求得

详解:(I)ABAF2的中点,

即椭圆C的离心率为

(II)过A、B、F2三点的圆的圆心为F1(-c,0),半径r==2c.

∵直线相切,

解得c=1.

∴椭圆C的方程为

(III)由(I)知,F2(1,0),直线MN的方程为

消去y整理得

∵直线与椭圆C交于M,N两点,

M(),N(),

MN的中点Q的坐标为

若以PM,PN为邻边的平行四边形是菱形,

,

整理得

故存在满足题意的点P,且m的取值范围是(

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中采取相同的单位长度.曲线的极坐标方程是,直线的参数方程是为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)设点,若直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大型综艺节目,《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的根据调查显示,是否喜欢盲拧魔方与性别有关为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如表所示,并邀请其中20名男生参加盲拧三阶魔方比赛,其完成情况如表所示.

(Ⅰ)将表补充完整,并判断能否在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关?

(Ⅱ)现从表中成功完成时间在这两组内的6名男生中任意抽取2人对他们的盲拧情况进行视频记录,求2人成功完成时间恰好在同一组内的概率.

附参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论函数的单调性及极值;

(Ⅱ)若不等式内恒成立,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a >2.

(I)讨论函数f(x)的单调性;

(II)若对于任意的,恒有,求a的取值范围.

(III)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

甲:8281797895889384

乙:9295807583809085

1)用茎叶图表示这两组数据;

2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数在点点处的切线方程;

(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)用分段函数的形式表示函数f(x);

(2)在平面直角坐标系中画出函数f(x)的图象;

(3)在同一平面直角坐标系中,再画出函数g(x)= (x>0)的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)> 的解集.

查看答案和解析>>

同步练习册答案