精英家教网 > 高中数学 > 题目详情
空间四个不同的平面,它们有多种位置关系,从交线数目看,所有可能出现的交线数目的集合是(  )
A.{0,1,2,3,4,5,6}B.{0,1,3,4,5,6}
C.{0,1,2,3,5,6}D.{0,1,3,4}
当四个平面相互平行时交线个数为0;
当四个平面出现象书本这一图形时交线为1;
当三个平行平面被第四个平面所截,此时交线为3;
当有三个平面是公共一条交线,这三个平面被与其交线平行的第四个平面所截构成的交线个数故为4或出现没有底平面的四棱柱时,交线也为4;
当四个平面中有三个平面构成墙角,另一平面为地面时,交线为5;
当四个平面组成的三棱锥时,交线个数为6;
故答案选:B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,四边形为矩形,的中点,.(1)求证:;(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中-A BC中,AB  AC,AB=AC=2,=4,点D是BC的中点.
(1)求异面直线所成角的余弦值;
(2)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(15分)在三棱锥P-ABC中,.

(1)求证:平面平面
(2)求BC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方体棱长为2,分别是的中点.

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

L1、L2是两条异面直线,直线m1、m2与L1、L2都相交,则m1,m2直线的位置为(  )
A.相交B.异面C.相交或异面D.异面或平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定下列四个命题:
(1)空间四边形的两条对角线是异面直线;
(2)空间四边形ABCD中没有对角线;
(3)和两条异面直线都相交的两条直线必异面;
(4)过直线外一点作该直线的垂线,有且只有一条;
(5)两条直线互相垂直,则一定共面;
(6)垂直于同一直线的两条直线相互平行.
其中正确的是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用一个平面截去正方体一角,则截面是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.正三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;
(Ⅲ)求异面直线AB和PC所成角的大小.

查看答案和解析>>

同步练习册答案