Éèf£¨x£©ÊǶ¨ÒåÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵĺ¯Êý£¬Æäµ¼º¯ÊýΪf'£¨x£©£®Èç¹û´æÔÚʵÊýaºÍº¯Êýh£¨x£©£¬ÆäÖÐh£¨x£©¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©¶¼ÓÐh£¨x£©£¾0£¬Ê¹µÃf'£¨x£©=h£¨x£©£¨x2-ax+1£©£¬Ôò³Æº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨a£©£®
£¨1£©É躯Êý£¬ÆäÖÐbΪʵÊý£®
£¨i£©ÇóÖ¤£ºº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨b£©£»
£¨ii£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®
£¨2£©ÒÑÖªº¯Êýg£¨x£©¾ßÓÐÐÔÖÊP£¨2£©£¬¸ø¶¨x1£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1£¼x2£¬ÉèmΪʵÊý£¬a=mx1+£¨1-m£©x2£¬¦Â=£¨1-m£©x1+mx2£¬ÇÒa£¾1£¬¦Â£¾1£¬Èô|g£¨a£©-g£¨¦Â£©|£¼|g£¨x1£©-g£¨x2£©|£¬ÇómÈ¡Öµ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©£¨i£©ÏÈÇó³öº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©£¬È»ºó½«ÆäÅä´Õ³Éf¡ä£¨x£©=h£¨x£©£¨x2-bx+1£©ÕâÖÖÐÎʽ£¬ÔÙ˵Ã÷h£¨x£©¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©¶¼ÓÐh£¨x£©£¾0£¬¼´¿ÉÖ¤Ã÷º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨b£©£»
£¨2£©¸ù¾ÝµÚÒ»ÎÊÁî¦Õ£¨x£©=x2-bx+1£¬ÌÖÂÛ¶Ô³ÆÖáÓë2µÄ´óС£¬µ±b¡Ü2ʱ£¬¶ÔÓÚx£¾1£¬¦Õ£¨x£©£¾0£¬ËùÒÔf¡ä£¨x£©£¾0£¬¿ÉµÃf£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵ¥µ÷ÐÔ£¬µ±b£¾2ʱ£¬¦Õ£¨x£©Í¼Ï󿪿ÚÏòÉÏ£¬¶Ô³ÆÖá x=£¾1£¬¿ÉÇó³ö·½³Ì¦Õ£¨x£©=0µÄÁ½¸ù£¬Åж¨Á½¸ùµÄ·¶Î§£¬´Ó¶øÈ·¶¨¦Õ£¨x£©µÄ·ûºÅ£¬µÃµ½f¡ä£¨x£©µÄ·ûºÅ£¬×îÖÕÇó³öµ¥µ÷Çø¼ä£®
£¨2£©ÓÉÌâÉèÖª£¬º¯Êýg£¨x£©µÃµ¼Êýg¡ä£¨x£©=h£¨x£©£¨x2-2x+1£©£¬ÆäÖÐh£¨x£©£¾0¶ÔÓÚÈÎÒâµÃx¡Ê£¨1£¬+¡Þ£©¶¼³ÉÁ¢
µ±x£¾1ʱ£¬g¡ä£¨x£©=h£¨x£©£¨x-1£©2£¾0£¬´Ó¶øg£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö·Ö¢Ùm¡Ê£¨0£¬1£©¢Úm¡Ü0¢Ûm¡Ý1ÈýÖÖÇé¿öÌÖÂÛÇó½âmµÃ·¶Î§¼´¿É
½â´ð£º½â£º£¨1£©f¡ä£¨x£©=-=
¡ßx£¾1ʱ£¬h£¨x£©=£¾0ºã³ÉÁ¢£¬
¡àº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨b£©£»
£¨ii£©µ±b¡Ü2ʱ£¬¶ÔÓÚx£¾1£¬¦Õ£¨x£©=x2-bx+1¡Ýx2-2x+1=£¨x-1£©2£¾0
ËùÒÔf¡ä£¨x£©£¾0£¬¹Ê´Ëʱf£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©ÉϵÝÔö£»
µ±b£¾2ʱ£¬¦Õ£¨x£©Í¼Ï󿪿ÚÏòÉÏ£¬¶Ô³ÆÖá x=£¾1£¬
·½³Ì¦Õ£¨x£©=0µÄÁ½¸ùΪ£º
¶ø £¬¡Ê£¨0£¬1£©
µ± x¡Ê£¨1£¬£©Ê±£¬¦Õ£¨x£©£¼0£¬f¡ä£¨x£©£¼0£¬
¹Ê´Ëʱf£¨x£©ÔÚÇø¼ä £¨1£¬£©Éϵݼõ£»
ͬÀíµÃ£ºf£¨x£©ÔÚÇø¼ä[£¬+¡Þ£©ÉϵÝÔö£®
×ÛÉÏËùÊö£¬µ±b¡Ü2ʱ£¬f£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©ÉϵÝÔö£»
µ±b£¾2ʱ£¬f£¨x£©ÔÚ £¨1£¬£¬£©Éϵݼõ£»f£¨x£©ÔÚ[£¬+¡Þ£©ÉϵÝÔö£®
£¨2£©ÓÉÌâÉèÖª£¬º¯Êýg£¨x£©µÃµ¼Êýg¡ä£¨x£©=h£¨x£©£¨x2-2x+1£©£¬ÆäÖÐh£¨x£©£¾0¶ÔÓÚÈÎÒâµÃx¡Ê£¨1£¬+¡Þ£©¶¼³ÉÁ¢
¡àµ±x£¾1ʱ£¬g¡ä£¨x£©=h£¨x£©£¨x-1£©2£¾0£¬´Ó¶øg£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö
¢Ùm¡Ê£¨0£¬1£©£¬¦Á=mx1+£¨1-m£©x2£¾mx1+£¨1-m£©x1=x1
¦Á£¼mx2+£¨1-m£©x2=x2
¡à¦Á¡Ê£¨x1£¬x2£©Í¬Àí¿ÉµÃ¦Â¡Ê£¨x1£¬x2£©
ÓÉg£¨x£©µÃµ¥µ÷ÐÔ¿ÉÖª£¬g£¨¦Á£©£¬g£¨¦Â£©¡Ê£¨g£¨x1£©£¬g£¨x2£©£©
´Ó¶øÓÐ|g£¨¦Á£©-g£¨¦Â£©|¡Ý|g£¨x1£©-g£¨x2£©|·ûºÏÌâÒâ
¢Úm¡Ü0ʱ£¬¦Á=mx1+£¨1-m£©x2¡Ýmx2+£¨1-m£©x2=x2
¦Â=£¨1-m£©x1+mx2¡Ü£¨1-m£©x1+mx1=mx1
ÓÚÊÇÓɦÁ£¾1£¬¦Â£¾1¼°g£¨x£©µÃµ¥µ÷ÐÔ¿ÉÖªg£¨¦Â£©¡Üg£¨x1£©£¼g£¨x2£©¡Üg£¨¦Á£©
¡à|g£¨¦Á£©-g£¨¦Â£©|¡Ý|g£¨x1£©-g£¨x2£©|ÓëÌâÉè²»·û
¢Ûm¡Ý1ʱ£¬Í¬Àí¿ÉµÃ¦Á¡Üx1£¬¦Â¡Ýx2£¬½ø¶ø¿ÉµÃ|g£¨¦Á£©-g£¨¦Â£©|¡Ý|g£¨x1£©-g£¨x2£©|ÓëÌâÉè²»·û
×ۺϢ٢ڢۿɵÃm¡Ê£¨0£¬1£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄ¸ÅÄî¡¢ÐÔÖÊ¡¢Í¼Ïó¼°µ¼ÊýµÈ»ù´¡ÖªÊ¶£¬¿¼²éÁé»îÔËÓÃÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨½øÐÐ̽Ë÷¡¢·ÖÎöÓë½â¾öÎÊÌâµÄ×ÛºÏÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ëɽ­Çøһģ£©Éèf£¨x£©ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬¶Ôx¡ÊR¶¼ÓÐf£¨-x£©=f£¨x£©£¬f£¨x£©•f£¨x+2£©=10£¬ÇÒµ±x¡Ê[-2£¬0]ʱ£¬f(x)=(
1
2
)x-1
£¬ÈôÔÚÇø¼ä£¨-2£¬6]ÄÚ¹ØÓÚxµÄ·½³Ìf£¨x£©-loga£¨x+2£©=0£¨a£¾1£©Ç¡ÓÐ3¸ö²»Í¬µÄʵÊý¸ù£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÌìºÓÇøÈýÄ££©Éèf£¨x£©ÊǶ¨ÒåÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵĺ¯Êý£¬Æäµ¼º¯ÊýΪf'£¨x£©£®Èç¹û´æÔÚʵÊýaºÍº¯Êýh£¨x£©£¬ÆäÖÐh£¨x£©¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©¶¼ÓÐh£¨x£©£¾0£¬Ê¹µÃf'£¨x£©=h£¨x£©£¨x2-ax+1£©£¬Ôò³Æº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨a£©£®
£¨1£©É躯Êýf(x)=Inx+
b+2x+1
(x£¾1)
£¬ÆäÖÐbΪʵÊý£®
£¨i£©ÇóÖ¤£ºº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨b£©£»
£¨ii£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®
£¨2£©ÒÑÖªº¯Êýg£¨x£©¾ßÓÐÐÔÖÊP£¨2£©£¬¸ø¶¨x1£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1£¼x2£¬ÉèmΪʵÊý£¬a=mx1+£¨1-m£©x2£¬¦Â=£¨1-m£©x1+mx2£¬ÇÒa£¾1£¬¦Â£¾1£¬Èô|g£¨a£©-g£¨¦Â£©|£¼|g£¨x1£©-g£¨x2£©|£¬ÇómÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ë³ÒåÇø¶þÄ££©É趨ÒåÔÚRÉϵĺ¯Êýf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ2¦ÐµÄżº¯Êý£¬f¡ä£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£®µ±x¡Ê[0£¬¦Ð]ʱ£¬0£¼f£¨x£©£¼1£»µ±x¡Ê£¨0£¬¦Ð£©ÇÒx¡Ù
¦Ð
2
ʱ£¬(x-
¦Ð
2
)f¡ä(x)£¼0
£®Ôòº¯Êýy=f£¨x£©-cosxÔÚ[-3¦Ð£¬3¦Ð]ÉϵÄÁãµã¸öÊýΪ
6
6
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇø¶þÄ££©Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏÒÔ2ΪÖÜÆڵĿº¯Êý£¬ÒÑÖªx¡Ê£¨0£¬1£©£¬f(x)=log
1
2
(1-x)
£¬Ôòº¯Êýf£¨x£©ÔÚ£¨1£¬2£©ÉϵĽâÎöʽÊÇ
y=log
1
2
(x-1)
y=log
1
2
(x-1)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º013

(Ìì½òÁùÇøÁª¿¼Ä£Äâ)Éèf(x)ÊǶ¨ÒåÔÚRÉϵĵ¥µ÷µÝ¼õµÄÆ溯Êý£¬Èô£¬£¬£¬Ôò

[¡¡¡¡]

A£®

B£®

C£®

D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸