精英家教网 > 高中数学 > 题目详情

【题目】已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.

(1)求点C,D对应的复数.

(2)求平行四边形ABCD的面积.

【答案】14-2i 5

27

【解析】

(1)设点O为原点,因为向量对应的复数为1+2i,向量对应的复数为3-i,

所以向量对应的复数为(3-i)-(1+2i)=2-3i,

=+,

所以点C对应的复数为(2+i)+(2-3i)=4-2i.

=+=(1+2i)+(3-i)=4+i,

=-=2+i-(1+2i)=1-i,

所以=+=1-i+(4+i)=5,

所以点D对应的复数为5.

(2)(1)=(1,2),=(3,-1),

因为·=||||cosB,

所以cosB===,

所以sinB=,

||=,||=,

所以面积S=||||sinB=××=7.

所以平行四边形ABCD的面积为7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化.老师讲课开始时学生的兴趣激增,接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.该小组发现注意力指标与上课时刻第分钟末的关系如下(,设上课开始时,t=0).若上课后第5分钟末时的注意力指标为140.

1)求的值;

2)上课后第5分钟末和第35分钟末比较,哪个时刻注意力更集中?

3)在一节课中,学生的注意力指标至少达到140的时间能保持多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,AB是圆Ox轴的两个交点(点B在点A右侧),点x轴上方的动点P使直线的斜率存在且依次成等差数列.

1)求证:动点P的横坐标为定值;

2)设直线与圆O的另一个交点分别为ST.求证:点QST三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴的两个端点分别为 离心率.

1)求椭圆的标准方程;

2)作一条垂直于轴的直线,使之与椭圆在第一象限相交于点,在第四象限相交于点,若直线与直线相交于点,且直线的斜率大于,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥的高为6,侧面与底面成的二面角,则其内切球(与四个面都相切)的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,交于一点,除以外的其余各棱长均为2.

作平面与平面的交线,并写出作法及理由

求证:平面平面

若多面体的体积为2,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数且)在处取得极值.

(1)当时,求的极大值点和极小值点;

(2)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于直线对称的圆的标准方程是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的零点之和;

2)已知,讨论函数的零点个数.

查看答案和解析>>

同步练习册答案