【题目】给出如下四种说法:
①四个实数依次成等比数列的必要而不充分条件是.
②命题“若且,则”为假命题.
③若为假命题,则均为假命题.
④若数列的前项n和,则该数列的通项公式.
其中正确说法的序号为________.
【答案】①②④
【解析】
对于①当出现0项时,不能为等比,结合充分必要条件的概念即可判断;对于②利用命题与否命题真假关系即可判断;对于③由复合命题真假的性质可判断;对于④根据的性质可求得通项公式.
对于①,若四个实数依次成等比数列,则由等比数列性质可得;当时,若,则不满足等比数列条件,所以是依次成等比数列的必要而不充分条件,故①正确;
对于②,命题“若且,则”为假命题,其否命题为“若且,则”为真命题,当时,不成立,即否命题为假,原命题为真,所以②正确;
对于③,若为假命题,则中至少有一个为假命题,所以③错误;
对于④,若数列的前项n和,则
由可得,
当时,,也符合通项公式,即,故④正确;
综上可知,正确的为①②④
故答案为:①②④
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD中,以D为原点建立空间直角坐标系,E为B的中点,F为的中点,则下列向量中,能作为平面AEF的法向量的是( )
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着中国经济的腾飞,互联网的快速发展,网络购物需求量不断增大.某物流公司为扩大经营,今年年初用192万元购进一批小型货车,公司第一年需要付保险费等各种费用共计12万元,从第二年起包括保险费、维修费等在内的所需费用比上一年增加6万元,且该批小型货车每年给公司带来69万元的收入.
(1)若该批小型货车购买n年后盈利,求n的范围;
(2)该批小型货车购买几年后的年平均利润最大,最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我市幸福社区在“9.9重阳节”向本社区征召100名义务宣传“敬老爱老”志愿者,现把该100名志愿者的成员按年龄分成5组,如下表所示:
组别 | 年龄 | 人数 |
1 | 10 | |
2 | 30 | |
3 | 20 | |
4 | 30 | |
5 | 10 |
(1)若从第1,2,3组中用分层抽样的方法选出6名志愿者参加某社区宣传活动,应从第1,2,3组各选出多少名志愿者?
(2)在(1)的条件下,宣传决定在这6名志愿者中随机选2名志愿者介绍宣传经验.
(i)列出所有可能的结果;
(ii)求第3组至少有1名志愿者被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(为参数),直线与曲线分别交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若点的极坐标为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆的左焦点作斜率为的直线交椭圆于,两点,为弦的中点,直线交椭圆于,两点.
(1)设直线的斜率为,求的值;
(2)若,分别在直线的两侧,,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小卖部为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温(平均温度)的对比表:
0 | 1 | 3 | 4 | |
140 | 136 | 129 | 125 |
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)如果某天的气温是,试根据(2)求出的线性回归方程预测这天大约可以卖出的热饮杯数.
参考公式:最小二乘法求线性回归方程系数公式:,.
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=AD,点M在线段EF上。
(1)求证:BC⊥平面ACFE;
(2)若,求证:AM∥平面BDF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com