精英家教网 > 高中数学 > 题目详情
已知向量
.
a
=(Asin
x
3
,Acos
x
3
),
.
b
=(cos
π
6
,sin
π
6
)函数f(x)=
.
a
.
b
(A>0,x∈R),且f(2π)=2.
(1)求函数y=f(x)的表达式;
(2)设α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
,求cos(α+β)的值.
分析:(1)利用向量的数量积和两角和的正弦公式即可得出;
(2)利用诱导公式、平方关系、两角和的余弦公式即可得出.
解答:解:(1)依题意得f(x)=Asin
x
3
cos
π
3
+Acos
x
3
sin
π
6
=Asin(
x
3
+
π
6
)

∵f(2π)=2,∴Asin(
3
+
π
6
)=2
,∴Asin
6
=2
,解得A=4.
∴f(x)=4sin(
x
3
+
π
6
)

(2)由f(3α+π)=
16
5
,得4sin(
3α+π
3
+
π
6
)=
16
5
,即4sin(α+
π
2
)=
16
5

cosα=
4
5

又∵α∈[0,
π
2
]
,∴sinα=
1-(
4
5
)2
=
3
5

f(3β+
2
)=-
20
13
,得4sin(
3β+
2
3
+
π
6
)=-
20
13
,即sin(β+π)=-
5
13

sinβ=
5
13

又∵β∈[0,
π
2
]
,∴cosβ=
1-(
5
13
)2
=
12
13

∴cos(α+β)=cosαcosβ-sinαsinβ=
4
5
×
12
13
-
3
5
×
5
13
=
33
65
点评:熟练掌握向量的数量积运算和两角和的正弦公式、诱导公式、平方关系、两角和的余弦公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•大连二模)已知向量
a
b
满足
a
=(-2sinx,
3
cosx+
3
sinx),
b
=(cosx,cosx-sinx),函数,f(x)=
a
b
(x∈R).
(I)将f(x)化成Asin((ωx+φ)(A>0,ω>0,|φ|<π的形式;
(Ⅱ)已知数列an=
n
2
 
f(
2
-
11π
24
)(n∈N*)
,求{an}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知向量
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),f(x)=
a
b
+1,其中A>0、ω>0、θ为锐角.f(x)的图象的两个相邻对称中心的距离为
π
2
,且当x=
π
12
时,f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)将f(x)的图象先向下平移1个单位,再向左平移?(?>0)个单位得g(x)的图象,若g(x)为奇函数,求?的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin
x
3
3
cos
x
3
),
b
=(1,1)
,函数f(x)=
a
b
cos
x
3

(1)将f(x)写成Asin(ωx+φ)+B的形式,并求其图象的对称中心;
(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的取值范围及此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:潍坊二模 题型:解答题

已知向量
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),f(x)=
a
b
+1,其中A>0、ω>0、θ为锐角.f(x)的图象的两个相邻对称中心的距离为
π
2
,且当x=
π
12
时,f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)将f(x)的图象先向下平移1个单位,再向左平移?(?>0)个单位得g(x)的图象,若g(x)为奇函数,求?的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(sin
x
3
3
cos
x
3
),
b
=(1,1)
,函数f(x)=
a
b
cos
x
3

(1)将f(x)写成Asin(ωx+φ)+B的形式,并求其图象的对称中心;
(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的取值范围及此时函数f(x)的值域.

查看答案和解析>>

同步练习册答案