精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{ax+b}{1+{x}^{2}}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)证明f(x)在(-1,1)上是增函数;
(Ⅲ)若f(x)-3t+1>0在(-1,0)上恒成立,求t的取值范围.

分析 (Ⅰ)利用奇函数在原点有意义,则f(0)=b=0,可解出a,b的值;
(Ⅱ)f(x)=$\frac{x}{1+{x}^{2}}$,利用导函数判断函数的单调性即可;
(Ⅲ)不等式整理为f(x)>3t-1,只需求出左式的最小值,但最小值不存在大于f(-1)=-$\frac{1}{2}$,故可以取等号.

解答 解:(Ⅰ)已知函数是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$,
∴f(0)=b=0,f($\frac{1}{2}$)=$\frac{\frac{1}{2}a}{\frac{5}{4}}$=$\frac{2}{5}$,
∴a=1,
∴f(x)=$\frac{x}{1+{x}^{2}}$;
(Ⅱ)f(x)=$\frac{x}{1+{x}^{2}}$,
∴f'(x)=$\frac{1-{x}^{2}}{(1+{x}^{2})^{2}}$>0(∈(-1,1)),
∴f(x)在(-1,1)上是增函数;
(Ⅲ)若f(x)-3t+1>0在(-1,0)上恒成立,
∴f(x)>3t-1,
∵f(x)在(-1,1)上是增函数;
∴f(x)的最小值大于f(-1)=-$\frac{1}{2}$,
∴3t-1≤-$\frac{1}{2}$,
∴t$≤\frac{1}{6}$.

点评 考查了奇函数的性质,导函数判断函数的单调性和恒成立问题的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义在R上的奇函数,且当x>0时,其解析式为f(x)=lgx,那么函数y=f(x)-sinx的零点个数共有(  )
A.3个B.4个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),则点M是线段AB的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=sinx-cosx,x∈[0,$\frac{π}{2}$]的最小值为(  )
A.-2B.-$\sqrt{3}$C.-$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若f(x)=$\left\{\begin{array}{l}{lg(x-2),x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,则函数y=f(x)的零点是3,-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足an=3an-1+5,a1=1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=$\sqrt{3}$sinωx+cosωx的图象向右平移$\frac{π}{3}$个单位后所得的函数为偶函数,则ω的值可以是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{2}{\sqrt{x-4}}$的值域是(  )
A.RB.(0,+∞)C.(-∞,4)D.(-∞,4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知角α终边上一点P(-4,3),求$\frac{{sin(α-2π)+cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(π-α)+cos(\frac{11π}{2}-α)sin(\frac{3π}{2}+α)}}$.

查看答案和解析>>

同步练习册答案