精英家教网 > 高中数学 > 题目详情
6.在三棱锥P-ABC中,平面PAC⊥平面ABC,PA=PC=BA=BC,则直线PB与平面PAC所成的角为(  )
A.30°B.45°C.60°D.90°

分析 由题意画出图形,取AC中点O,连接PO,BO,可得BO⊥AC,再由面面垂直的性质可得BO⊥平面PAC,知∠BPO为直线PB与平面PAC所成的角,求解直角三角形得答案.

解答 解:如图,

设PA=PC=BA=BC=a,取AC中点O,连接PO,BO,
则BO⊥AC,
∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,
∴BO⊥平面PAC,则∠BPO为直线PB与平面PAC所成的角,
∵PA=PC=BA=BC,AC=AC,
∴△PAC≌△BAC,则PO=OB,
∴∠BPO=45°,
故选:B.

点评 本题考查直线与平面所称的角,考查空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则关于f(x)的说法正确的是(  )
A.对称轴方程是x=$\frac{π}{3}$+2kπ(k∈Z)B.φ=-$\frac{π}{6}$
C.最小正周期为πD.在区间($\frac{π}{2}$,$\frac{7π}{6}$)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在△ABC中,若AB=5,AC=7,∠B=60°,则BC等于(  )
A.$5\sqrt{3}$B.$6\sqrt{2}$C.8D.$5\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\frac{1-x}{x}+lnx$,f'(x)为f(x)的导函数,则f'(2)的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点A(2,1),且与直线x+2y-1=0垂直的直线方程为(  )
A.x+2y-4=0B.x-2y=0C.2x-y-3=0D.2x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点P(0,1),且与点A(3,3)和B(5,-1)的距离相等的直线方程是(  )
A.y=1B.2x+y-1=0
C.y=1或2x+y-1=0D.2x+y-1=0或2x+y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题不正确的个数是(  )
①终边不同的角的同名三角函数值不等;
②若sinα>0,则α是第一、二象限;
③若α是第二象限角且P(x,y)是其终边上一点,则cosα=$\frac{-x}{\sqrt{{x}^{2}+{y}^{2}}}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为$\frac{6}{7}$,则口袋中白球的个数为(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“△OAB的面积为$\frac{1}{2}$”是“k=1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案