精英家教网 > 高中数学 > 题目详情
P:
x1>3
x2>3
,q:
x1+x2>6
x1x2>9
那么P是q成立的什么条件?
分析:判断充要条件的问题,就是看看由P和q谁推出谁的问题.
解答:解:两个同向不等式相加、相乘,即可由P?q;
反之,若取x1=1,x2=10,符合q,但不符合P,说明q推不出P.
∴P是q成立的充分不必要条件
点评:取特殊值法是解决不成立问题的重要方法.本题正是利用举一个反例,就足以证明一个结论不成立了.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m∈R,设P:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;Q:函数f(x)=3x2+2mx+m+
43
有两个不同的零点.求使“P且Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m∈R,设P:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;Q:函数f(x)=3x2+2mx+m+
4
3
有两个不同的零点.求使“P且Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省邢台一中高二(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知m∈R,设P:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;Q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使“P且Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:1 集合与常用逻辑用语 质量检测(解析版) 题型:解答题

已知m∈R,设P:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;Q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使“P且Q”为真命题的实数m的取值范围.

查看答案和解析>>

同步练习册答案