精英家教网 > 高中数学 > 题目详情

【题目】若点为点在平面上的正投影,则记.如图,在棱长为的正方体中,记平面,平面,点是棱上一动点(与不重合).给出下列三个结论:

①线段长度的取值范围是

②存在点使得平面

③存在点使得.

其中,所有正确结论的序号是( )

A.①②③B.②③C.①③D.①②

【答案】D

【解析】

以点为坐标原点,所在直线分别为轴、轴、轴建立空间直角坐标系,设点的坐标为,求出点的坐标,然后利用向量法来判断出命题①②③的正误.

的中点,过点在平面内作,再过点在平面内作,垂足为点.

在正方体中,平面平面

平面,即

同理可证,则.

以点为坐标原点,所在直线分别为轴、轴、轴建立空间直角坐标系,设,则.

对于命题①,,则,则,所以,,命题①正确;

对于命题②,,则平面的一个法向量为

,令,解得

所以,存在点使得平面,命题②正确;

对于命题③,,令

整理得,该方程无解,所以,不存在点使得,命题③错误.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方形ABCDEF分别为ABCD的中点,将△ADE沿DE折起,使△ACD为等边三角形,如图所示,记二面角A-DE-C的大小为.

1)证明:点A在平面BCDE内的射影G在直线EF上;

2)求角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这第一产品期间第天的利润(单位:万元,),记第天的利润率,例如.

1)求的值;

2)求第天的利润率

3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线过点,且与抛物线交于两点,

1)求的取值范围;

2)若,点的坐标为,直线与抛物线的另一个交点为,直线与抛物线的另一个交点为,直线轴交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2x的焦点,点AB在该抛物线上且位于x轴的两侧,(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】业界称中国芯迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为AA为常数)元,之后每年会投入一笔研发资金,n年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,.已知3年后总投入资金为研发启动是投入资金的3倍,问:

1)研发启动多少年后,总投入资金是研发启动时投入资金的8倍;

2)研发启动后第几年投入的资金最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为等边三角形,为等腰直角三角形,,平面平面ABD,点E与点D在平面ABC的同侧,且.FAD中点,连接EF.

1)求证:平面ABC

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1,求函数的极值;

2 时,判断函数在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

1)若,直线与曲线相交于两点,求

2)若,求曲线上的点到直线的距离的最小值.

查看答案和解析>>

同步练习册答案