科目:高中数学 来源:甘肃省嘉峪关市一中2012届高三第三次模拟考试数学试题 题型:044
(理)设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=ax-1-lnx(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(3)当0<x<y<e2且x≠e时,试比较与的大小.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江苏五校高三下学期期初教学质量调研数学卷(解析版) 题型:解答题
设函数f (x)的定义域为M,具有性质P:对任意x∈M,都有f (x)+f (x+2)≤2f (x+1).
(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;
(2)若M为自然数集N,并满足对任意x∈M,都有f (x)∈N. 记d(x)=f (x+1)-f (x).
(ⅰ) 求证:对任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求证:存在整数0≤c≤d(1)及无穷多个正整数n,满足d(n)=c.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三3月月考理科数学试卷(解析版) 题型:解答题
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数 a的值;
(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.
注:e是自然对数的底数.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=ax+ln x(a∈R).
(1)若a=1,求曲线y=f(x)在x=处切线的斜率;
(2)求函数f(x)的单调区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),
求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com