精英家教网 > 高中数学 > 题目详情

【题目】已知为椭圆的一个焦点过原点的直线与椭圆交于两点 的面积为.

(Ⅰ)求椭圆的离心率;

(Ⅱ)若过点且不与坐标轴垂直的直线交椭圆于两点线段的垂直平分线与轴交于点求点横坐标的取值范围.

【答案】(Ⅰ);(Ⅱ)

【解析】试题分析:

()由题意结合椭圆的对称性可知四边形为矩形,由题意得到关于a,b,c的方程组,消元整理可得则椭圆的离心率

()由题意结合()的结论可得椭圆的方程为联立直线方程与椭圆方程可得,结合韦达定理和中点坐标公式可得点横坐标为: ,结合知点横坐标的取值范围为:

试题解析:

Ⅰ)设椭圆的焦半距为,左焦点为

由椭圆的对称性可知四边形为矩形,

,由消去上式的

,椭圆的离心率

的坐标为,由(1)中

,椭圆的方程为

设直线的斜率为,直线不与坐标轴垂直,故

直线的方程为

方程与椭圆方程联立得: ,消得:

由韦达定理得: ,设线段中点坐标为,则

垂直平分线的方程为.

点横坐标为:

因为,所以

故点横坐标的取值范围为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一次函数上的减函数,,且 f [ f(x)]=16x-3.

(1)求

(2)若在(-2,3)单调递增,求实数的取值范围;

(3)当时,有最大值1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,解答下列问题:

(1)求输入的的值分别为时,输出的的值;

(2)根据程序框图,写出函数)的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于的不等式恰好有4个整数解,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 底面底面为正方形 分别是的中点.

(Ⅰ)求证:

(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c均为正数,且a+b+c=1.证明:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为,则张师傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】设球半径为R,圆柱的体积为时圆柱的体积最大为 ,因此材料利用率= ,选C.

点睛:空间几何体与球接、切问题的求解方法

求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.

型】单选题
束】
12

【题目】已知抛物线 在点处的切线与曲线 相切,若动直线分别与曲线相交于两点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km)

(1)t4时,求s的值;

(2)st变化的规律用数学关系式表示出来;

(3)N城位于M地正南方向,且距M650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,⊥底面的中点.

已知.求:

(1)三棱锥PABC的体积;

(2)异面直线BCAD所成角的余弦值.

查看答案和解析>>

同步练习册答案