精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
①当切线在两坐标轴上的截距为零时,设切线方程为y=kx,
,解得k=2±
从而切线方程为y=(2± )x.
②当切线在两坐标轴上的截距不为零时,设切线方程为x+y-a=0,则 ,解得a=-1或3,
从而切线方程为x+y+1=0或x+y-3=0.
综上,切线方程为(2+ )x-y=0或(2- )x-y=0或x+y+1=0或x+y-3=0
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

【答案】
(1)解:将圆C的方程整理,得(x+1)2+(y-2)2=2
(2)解:因为圆心C(-1,2)到直线l的距离d= ,所以直线l与圆C相离.
当|PM|取最小值时,|CP|取得最小值,此时CP垂直于直线l.
所以直线CP的方程为2x+y=0.
解方程组 得点P的坐标为(-
【解析】(1)通过将圆C的方程整理,可以得到圆的方程。
(2)由题意可得圆心到直线的距离小于半径,所以直线与圆C相离,所以当|PM|取最小值时,|CP|取得最小值,此时CP垂直于直线l.,所以可以得到直线CP的方程,列出等式解出,可以得到点P的坐标。
【考点精析】解答此题的关键在于理解圆的标准方程的相关知识,掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=3时,求函数 上的最大值和最小值;
(2)函数 既有极大值又有极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上函数f(x)是可导的,f(1)=2,且f(x)+f'(x)<1,则不等式f(x)﹣1<e1x的解集是( )(注:e为自然对数的底数)
A.(1,+∞)
B.(﹣∞,0)∪(0,1)
C.(0,1)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在 中, 分别为角 的对边,且满足 .
(1)求 的值;
(2)若 ,求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足|x﹣1|>a其中a>0;命题q:实数x满足 <1
(1)若命题p中a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex﹣x,h(x)=﹣kx3+kx2﹣x+1.
(1)求f(x)的最小值;
(2)设h(x)≤f(x)对任意x∈[0,1]恒成立时k的最大值为λ,证明:4<λ<6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=4,直线l:y+x﹣t=0,P为直线l上一动点,O为坐标原点.
(1)若直线l交圆C于A、B两点,且∠AOB= ,求实数t的值;
(2)若t=4,过点P做圆的切线,切点为T,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知 是圆 上一点,折叠该圆两次使点 分别与圆上不相同的两点(异于点 )重合,两次的折痕方程分别为 ,若圆 上存在点 ,使 ,其中 的坐标分别为 ,则实数 的取值集合为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.

查看答案和解析>>

同步练习册答案