精英家教网 > 高中数学 > 题目详情
函数 的导数为               

【错解分析】复合函数对自变量的导数等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即
【正解】

【点评】掌握复合函数的求导方法关键在于分清函数的复合关系,适当选定中间变量,分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的系数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当a=1时,求函数在区间上的最小值和最大值;
(Ⅱ)若函数在区间上是增函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知则( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)设函数.
⑴ 求的极值点;
⑵ 若关于的方程有3个不同实根,求实数a的取值范围.
⑶ 已知当恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在定义域内可导,其图象如图所示,记的导函数为,则满足的实数的范围是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求的取值范围;
(3)若对任意,且恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数 ,其中r为有理数,且0<r<1. 则的最小值为_______;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)求下列函数的导数
      ②

查看答案和解析>>

同步练习册答案