精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形均为菱形,,且.

1)求证:平面

2)求二面角的余弦值;

3)若为线段上的一点,满足直线与平面所成角的正弦值为,求线段的长.

【答案】1)证明见解析;(2;(3.

【解析】

1)设相交于点,连接,证明得到答案.

2)先证明两两垂直,如图所示建立直角坐标系,分别计算法向量,利用夹角公式得到答案.

3)设,则,利用夹角公式计算得到答案.

1)设相交于点,连接

∵四边形为菱形,∴,且中点,∵

平面.

2)连接,∵四边形为菱形,且

为等边三角形,∵中点,∴

平面. 两两垂直

∴建立空间直角坐标系,如图所示:

∵四边形为菱形, ,∴.

为等边三角形,∴.

设平面的法向量为,则

,则,得

设平面的法向量为,则

,则,得

所以

又因为二面角为钝角,

所以二面角的余弦值为.

3)设

所以

化简得

解得:(舍) 所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若动点到定点与定直线的距离之和为4.

(1)求点的轨迹方程,并画出方程的曲线草图.

(2)记(1)得到的轨迹为曲线,若曲线上恰有三对不同的点关于点对称,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列,等差数列满足,且的等比中项.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网购逐步走入百姓生活,网络(电子)支付方面的股票受到一些股民的青睐.某单位4位热爱炒股的好朋友研究后决定购买“生意宝”和“九州通“这两支股票中的一支.他们约定:每人通过掷一枚质地均匀的骰子决定购买哪支股票,掷出点数为56的人买“九州通”股票,掷出点数为小于5的人买“生意宝”股票,且必须从“生意宝”和“九州通”这两支股票中选择一支股票购买.

1)求这4人中恰有1人购买“九州通”股票的機率;

2)用分别表示这4人中购买“生意宝”和“九州通”股票的人数,记,求随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,侧面底面的中点,点在侧棱上.

(1)求证:;.

(2)若的中点,求二面角的余弦值;

(3)若,当平面时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处取得最大值,求实数的值;

(2)若,求在区间上的最大值;

(3)若,直线都不是曲线的切线,求的取值范围(只需直接写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面,,为邻边作平行四边形,连接.

(1)求证:平面

(2)若二面角.

求证:平面平面

求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点的中点.

(Ⅰ)求证: ;

(Ⅱ)在边上找一点,使∥面

并求三棱锥的体积.

查看答案和解析>>

同步练习册答案