精英家教网 > 高中数学 > 题目详情
已知点F(0,1),直线l:y=-l,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A,B两点,设|DA|=l1,|DB|=l2,求的最大值。
解:(Ⅰ)设P(x,y),则Q(x,-1),

∴ (0,y+l)·(-x,2)=(x,y-1)·(x,-2),
即2(y+1)=x2-2(y-1),即x2=4y,
所以动点P的轨迹C的方程x2=4y。
(Ⅱ)设圆M的圆心坐标为M(a,b),则a2=4b ①,
圆M的半径为
圆M的方程为(x-a)2+(y-b)2=a2+(b-2)2
令y=0,则(x-a)2+b2=a2+(b-2)2
整理得,x2-2ax+4b-4=0, ②
由①,②解得:x=a±2,
不妨设A(a-2,0),B(a+2,0),

,   ③
当a≠0时,由③得

当且仅当时,等号成立,
当a=0时,由③,得
时,的最大值为
练习册系列答案
相关习题

科目:高中数学 来源:2008年广东地区数学科全国各地模拟试题直线与圆锥曲线大题集 题型:044

过抛物线x2=4y上不同两点A、B分别作抛物线的切线相交于P点,(1)求点P的轨迹方程;

(2)已知点F(0,1),是否存在实数λ使得?若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:浙江省部分重点中学2012届高三下学期3月联考数学理科试题 题型:013

已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且,动点P的轨迹为C,已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,则的最大值为

[  ]

A.2

B.

C.3

D.

查看答案和解析>>

科目:高中数学 来源:广东省广州市2010届高三第一次模拟考试数学理科试题 题型:044

已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且

(1)求动点P的轨迹C的方程;

(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(0,1),点P在x轴上运动,M点在y轴上,N为动点,且满足.(1)求动点N的轨迹C方程;(2)由直线y= -1上一点Q向曲线C引两条切线,切点分别为A,B,求证:AQ⊥BQ.

查看答案和解析>>

同步练习册答案