精英家教网 > 高中数学 > 题目详情

【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响.

(Ⅰ)假设这名射手射击次,求有次连续击中目标,另外次未击中目标的概率;

(Ⅱ)假设这名射手射击次,记随机变量为射手击中目标的次数,求的分布列及数学期望.

【答案】(Ⅰ);(Ⅱ)分布列见解析,.

【解析】

(Ⅰ)这名射手次射击中次连续击中,则连续次击中目标有三种情况:分别是前三次、中间三次、最后三次,依次计算每种情况发生的概率,求和即可得解;

(Ⅱ)由题知,每次射击击中目标的概率是,且各次射击的结果互不影响,则,利用二项分布的概率公式列出分布列并求出期望即可.

解:(Ⅰ)设i次射击击中目标为事件射手在5次射击中, 3次连续击中目标,另外2次未击中目标为事件A,则

(Ⅱ)为射手在5次射击中击中目标的次数,则.

0

1

2

3

4

5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;

(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,

1)求证:平面

2)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式;(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中平面平面.

(Ⅰ)证明:

(Ⅱ)若点E中点,,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苹果可按果径(最大横切面直径,单位:.)分为五个等级:时为1级,时为2级,时为3级,时为4级,时为5级.不同果径的苹果,按照不同外观指标又分为特级果、一级果、二级果.某果园采摘苹果10000个,果径均在内,从中随机抽取2000个苹果进行统计分析,得到如图1所示的频率分布直方图,图2为抽取的样本中果径在80以上的苹果的等级分布统计图.

(1)假设服从正态分布,其中的近似值为果径的样本平均数(同一组数据用该区间的中点值代替),,试估计采摘的10000个苹果中,果径位于区间的苹果个数;

(2)已知该果园今年共收获果径在80以上的苹果,且售价为特级果12元,一级果10元,二级果9元.设该果园售出这苹果的收入为以频率估计概率,求的数学期望.

附:若随机变量服从正态分布,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若,求的取值范围;

(2)若的图像与轴围成的封闭图形面积为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆A为圆O1上任意一点,点D在线段上.,已知

(1)求点D的轨迹方程H

(2)若直线与方程H所表示的图像交于EF两点,是椭圆上任意一点.若OG平分弦EF,且,试判断四边形OEGF形状并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线Γ的方程为y24x,点P的坐标为(11).

1)过点P,斜率为﹣1的直线l交抛物线ΓUV两点,求线段UV的长;

2)设Q是抛物线Γ上的动点,R是线段PQ上的一点,满足2,求动点R的轨迹方程;

3)设ABCD是抛物线Γ的两条经过点P的动弦,满足ABCD.点MN分别是弦ABCD的中点,是否存在一个定点T,使得MNT三点总是共线?若存在,求出点T的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的极值;

(Ⅱ)若实数为整数,且对任意的时,都有恒成立,求实数的最小值.

查看答案和解析>>

同步练习册答案