精英家教网 > 高中数学 > 题目详情
设O是正△ABC的中心,则向量
AO
BO
CO
是(  )
分析:易知O是正△ABC外接圆的圆心,从而|
OA
|=|
OB
|=|
OC
|
=R(R为△ABC外接圆的半径),由此可得结论.
解答:解:因为O是正△ABC的中心,
所以|
OA
|=|
OB
|=|
OC
|
=R(R为△ABC外接圆的半径),
所以向量
AO
BO
CO
是模相等的向量,
故选B.
点评:本题考查相等向量的定义,属基础题,正确理解相等向量的定义是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,△ABC是正三角形,且∠PCA=∠PCB.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)设正△ABC的中心为O,△PAB的重心为G,求证:OG∥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

用向量探索几何的性质:
(1)在△ABC中,D是线段BC的中点,证明:
AB
+
AC
=2
AD

(2)把此结论推广到四面体:设四面体ABCD,点O是三角形BCD的重心,探究
AB
AC
AD
AO
的等量关系,并说明理由;
(3)进一步探索,确定正n棱锥P-A1A2A3…An的底面多边形内一点O的位置,并写出向量:
PA1
PA2
、…、
PAn
PO
的等量关系.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱锥S-ABCD中,AB=8
2
,SA=10,M、N、O分别是SA、SB、BD的中点.
(1)设P是OC的中点,证明:PN∥平面BMD;
(2)求直线SO与平面BMD所成角的大小;
(3)在△ABC内是否存在一点G,使NG⊥平面BMD,若存在,求线段NG的长度;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P-ABC中,△ABC是正三角形,且∠PCA=∠PCB.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)设正△ABC的中心为O,△PAB的重心为G,求证:OG∥平面PAC.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州市吴江市松陵高级中学高三(下)期中数学试卷(解析版) 题型:解答题

如图,在三棱锥P-ABC中,△ABC是正三角形,且∠PCA=∠PCB.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)设正△ABC的中心为O,△PAB的重心为G,求证:OG∥平面PAC.

查看答案和解析>>

同步练习册答案