精英家教网 > 高中数学 > 题目详情

【题目】2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗击疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课,每天共280分钟,请学生自主学习.区教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了100名学生进行问卷调查,为了方便表述把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,随机调查的100名学生学习时间的人数频率分布直方图如图所示:以频率估计概率回答下列问题:

1)求100名学生中三类学生分别有多少人?

2)在三类学生中,按分层抽样的方法从上述100个学生中抽取10人,并在这10人中任意邀请3人电话访谈,求邀请的3人中是类的学生人数的分布列和数学期望;

3)某校高三(1)班有50名学生,某天语文和数学老师计划分别在19:0019:4020:0020:40在线上与学生交流,由于受校园网络平台的限制,每次只能30个人同时在线学习交流.假设这两个时间段高三(1)班都有30名学生相互独立地随机登录参加学习交流.表示参加语文或数学学习交流的人数,当为多少时,其概率最大.

【答案】130;(2)分布列见解析,;(342.

【解析】

1)根据频率分布直方图即可求出结果;

2)根据分层抽样可知从类中抽2人,类中抽5人,类中抽3人,再根据超几何分布列出分布列,求出期望;

(3)学生随机独立参加语文或数学在线辅导所包含的基本事件总数为,当时,由韦恩图可知,事件所包含的基本事件的总数为

所以最大,列出不等式组,可得,由此即可求出结果.

1类学生有:人,

类学生有:人,

类学生有:.

2

故从类中抽2人,类中抽5人,类中抽3.

设邀请的三人中是类的学生人数为,则可取0123.

.

所以的分布列为

0

1

2

3

所以.

3)学生随机独立参加语文或数学在线辅导所包含的基本事件总数为

时,由韦恩图可知,只参加语文辅导的人数为

只参加数学辅导的人数为

语文和数学都参加辅导的人数为.

事件所包含的基本事件的总数为

所以最大.

所以.

又因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】Keep是一款具有社交属性的健身APP,致力于提供健身教学跑步骑行交友及健身饮食指导装备购买等--站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程不仅如此,它还可以根据不同人的体质,制定不同的健身计划小吴根据Keep记录的20191月至201911月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图根据该折线图,下列结论正确的是( ).

A.月跑步里程逐月增加

B.月跑步里程最大值出现在10

C.月跑步里程的中位数为5月份对应的里程数

D.1月至5月的月跑步里程相对于6月至11月波动性更小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某快递公司收取快递费的标准是:重量不超过的包裹收费元;重量超过的包裹,在收费元的基础上,每超过(不足,按计算)需再收元.该快递公司承揽了一个工艺品厂家的全部玻璃工艺品包裹的邮寄事宜,该厂家随机统计了件这种包裹的两个统计数表如下:

包裹重量

包裹数

损坏件数

包裹重量

出厂价(元件)

卖价(元件)

估计该快递公司对每件包裹收取快递费的平均值;

将包裹重量落入各组的频率视为概率,该工艺品厂家承担全部运费,每个包裹只有一件产品,如果客户收到有损坏品的包裹,该快递公司每件按其出厂价的赔偿给厂家.现该厂准备给客户邮寄重量在区间内的工艺品各件,求该厂家这两件工艺品获得利润的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧棱垂直于底面的中点,平行于平行于面.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是离心率为的椭圆的左、右顶点,是椭圆的右焦点,且.

1)求椭圆的方程;

2)已知动直线与椭圆有且只有一个公共点.

①若轴于点,求点横坐标的取值范围;

②设直线交直线于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.

女生

男生

总计

获奖

不获奖

总计

附表及公式:

其中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差,前项和为,若_______,数列满足.

1)求的通项公式;

2)求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知四边形是菱形,,二面角的大小为的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的数列,设,即,…,中的最大值,则称数列是数列的“和谐数列”.

1)设,求的值,并证明数列是等差数列;

2)设数列都是公比为q的正项等比数列,若数列是等差数列,求公比q的取值范围;

3)设数列满足,数列是数列的“和谐数列”,且m为常数,2,…,k),求证:

查看答案和解析>>

同步练习册答案