精英家教网 > 高中数学 > 题目详情
已知f(x)的定义域为x∈R且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,那么,当x>1时,f(x)的递减区间是(  )
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]
分析:由f(x+1)为奇函数,利用换元法得f(x)=-f(2-x),再设x>1,则2-x<1,代入解析式求出f(2-x),由关系式求出f(x),根据二次函数的单调性求出它的减区间.
解答:解:由题意知,f(x+1)为奇函数,则f(-x+1)=-f(x+1),
令t=-x+1,则x=1-t,故f(t)=-f(2-t),即f(x)=-f(2-x),
设x>1,则2-x<1,
∵当x<1时,f(x)=2x2-x+1,
∴f(2-x)=2(2-x)2-(2-x)+1=2x2-7x+7,
∴f(x)=-f(2-x)=-2x2+7x-7,
∴函数的对称轴x=
7
4

故所求的减区间是 [
7
4
,+∞ )

故选C.
点评:本题主要考查对单调性和奇偶性的理解,判断函数奇偶性和求函数单调区间的基本方法以及函数解析式的求解方法的掌握,关键利用奇函数的定义推出的关系式;并且函数的单调性、奇偶性是高考函数题的重点考查内容.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为[-1,2),则f(|x|)的定义域为(  )
A、[-1,2)B、[-1,1]C、(-2,2)D、[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域是[0,1],且f(x+m)+f(x-m)的定义域是∅,则正数m的取值范围是
m>
1
2
m>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0时的表达式;
(2)求f(x)在x<0时的表达式;
(3)若关于x的方程f(x)=ax(a∈R)有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为R+,且f(x+y)=f(x)+f(y)对一切正实数x,y都成立,若f(8)=4,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为[0,1],求函数y=f(x+a)+f(x-a)(0<a<
12
)的定义域.

查看答案和解析>>

同步练习册答案