精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,已知am+n=A,am-n=B,则am=
1
2
(A+B)
1
2
(A+B)
分析:题目给出的数列是等差数列,由等差数列的性质得到am-n,am,am+n成等差数列,然后直接由等差数列的性质求解.
解答:解:∵m-n,m,m+n成等差数列,又{an}是等差数列.∴am-n,am,am+n成等差数列,
∴2am=am-n+am+n=A+B,∴am=
1
2
(A+B).
故答案为
1
2
(A+B)
点评:本题考查了等差数列的通项公式,考查了等差数列的性质,解答此题的关键是明确am-n,am,am+n成等差数列,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案