【题目】已知四棱锥中,底面为平行四边形,点、、分别在、、上.
(1)若,求证:平面平面;
(2)若满足,则点满足什么条件时,面.
【答案】(1)证明见解析;(2)当点是的中点时,面.
【解析】
(1)由可证明出,再由,可得出,利用直线与平面平行的判定定理可证明出平面,同理证明平面,再由平面与平面平行的判定定理可证明出平面平面;
(2)连接交于点,连接,取的中点,取的中点,连接、、,利用直线与平面平行的判定定理证明出平面,平面,再利用平面与平面平行的判定定理证明出平面平面,于此可得出平面.
(1),,
四边形是平行四边形,,,
平面,平面,平面.
又,,
平面,平面,平面.
,、平面,平面平面;
(2)连接交于点,连接,取的中点,取的中点,连接、、,则点为的中点,下面证明:当点为的中点时,平面.
且为的中点,,为的中点,
又点为的中点,,
平面,平面,平面,同理,平面.
,、平面,平面平面.
平面,平面.
因此,当点是的中点时,面.
科目:高中数学 来源: 题型:
【题目】【2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考】已知函数(其中且为常数, 为自然对数的底数, ).
(Ⅰ)若函数的极值点只有一个,求实数的取值范围;
(Ⅱ)当时,若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点是圆心为半径为的半圆弧上从点数起的第一个三等分点,点是圆心为半径为的半圆弧的中点,、分别是两个半圆的直径,,直线与两个半圆所在的平面均垂直,直线、共面.
(1)求三棱锥的体积;
(2)求直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直四棱柱的底面是直角梯形,,,、分别是棱、上的动点,且,,,.
(1)证明:无论点怎样运动,四边形都为矩形;
(2)当时,求几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点且.求证: 的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台问政直播节目首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 | 一般 | 不满意 | |
A部门 | 50% | 25% | 25% |
B部门 | 80% | 0 | 20% |
C部门 | 50% | 50% | 0 |
D部门 | 40% | 20% | 40% |
(1)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(2)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com