【题目】设集合S={A0 , A1 , A2 , A3},在S上定义运算⊕:Ai⊕Aj=Ak , 其中k为i+j被4除的余数,i,j=0,1,2,3,则使关系式(Ai⊕Ai)⊕Aj=A0成立的有序数对(i,j)的组数为( )
A.4
B.3
C.2
D.1
科目:高中数学 来源: 题型:
【题目】某学校制定学校发展规划时,对现有教师进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:
学历 | 35岁以下 | 35至50岁 | 50岁以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(Ⅰ)用分层抽样的方法在35至50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有l人的学历为研究生的概率;
(Ⅱ)在该校教师中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取l人,此人的年龄为50岁以上的概率为 ,求x、y的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(1﹣x)的定义域为M,函数 的定义域为N,则M∩N=( )
A.{x|x<1且x≠0}
B.{x|x≤1且x≠0}
C.{x|x>1}
D.{x|x≤1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=f(x)是定义在a,b上的增函数,其中a,b∈R且0<b<﹣a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(﹣x),则对于F(x)有以下四个说法:
①定义域是[﹣b,b];②是偶函数;③最小值是0;④在定义域内单调递增.
其中正确的有(填入你认为正确的所有序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设r是方程f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线l,l的方程为y=f(x0)+(x-x0),求出l与x轴交点的横坐标x1=x0-,称x1为r的一次近似值。过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴交点的横坐标x2=x1-,称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中,=-,称为r的n+1次近似值,上式称为牛顿迭代公式。已知是方程-6=0的一个根,若取x0=2作为r的初始近似值,则在保留四位小数的前提下,≈
A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C上任意一点M到点F(0,1)的距离比它到直线 的距离小1.
(1)求曲线C的方程;
(2)过点 P(2,2)的直线m与曲线C交于A,B两点,设当△AOB的面积为4时(O为坐标原点),求 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com