精英家教网 > 高中数学 > 题目详情

【题目】为了保护环境,某单位采用新工艺,把二氧化硅转化为一种可利用的化工产品.已知该单位每月都有处理量,且处理量最多不超过吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化硅得到可利用的化工产品价值为.

1)设该单位每月获利为(元),试将表示月处理(吨)的函数;

2)若要保证该单位每月不亏损,则每月处理量应控制在什么范围?

3)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

【答案】123

【解析】

1)根据:利润(化工品总价值)(总成本),得到函数解析式,注意定义域;(2)不亏损只需:获利,求解出的范围即可;(3)将每吨的评论处理成本表示为:,计算出最小值即可.

1)据题意有:

2)保证不亏损,则有,即,解得:,且,所以

3)每吨的评论处理成本为:,取等号时:.故每月处理量为吨时,能使每吨的平均处理成本最低.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若是函数的唯一极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当,求的最值;

(2)若有两个不同的极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图像过点,且在点处的切线方程为.

1)求的解析式;

2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的两个顶点分别为,两个焦点分别为),过点的直线与椭圆相交于另一点,且.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设直线上有一点)在的外接圆上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)设,若函数的图象的一条对称轴为直线,求的值;

2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的的值;

3)设,已知函数在区间上的所有零点依次为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.

(1)写出C的普通方程;

(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案