精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面ABCD垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(1)在棱PB上是否存在一点Q,使得QM∥面PAD?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(2)求点D到平面PAM的距离.

分析 (1)取棱PB的中点Q,连结QM,QA,又M为PC的中点,证明QM∥AD,利用直线与平面平行的判定定理证明QM∥面PAD.
(2)设点D到平面PAC的距离为h,由VD-PAC=VP-ACD,通过证明以及计算即可求点D到平面PAM的距离.

解答 解:(1)当点Q为棱PB的中点时,QM∥面PAD,证明如下
…(1分)
取棱PB的中点Q,连结QM,QA,又M为PC的中点,
所以$QM∥BC且QM=\frac{1}{2}BC$,
在菱形ABCD中AD∥BC可得QM∥AD…(3分)
又QM?面PAD,AD?面PAD
所以QM∥面PAD…(5分)
(2)点D到平面PAM的距离即点D到平面PAC的距离,
由(Ⅰ)可知PO⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO?平面PAD,所以PO⊥平面ABCD,
即PO为三棱锥P-ACD的体高.…(7分)
在Rt△POC中,$PO=OC=\sqrt{3}$,$PC=\sqrt{6}$,
在△PAC中,PA=AC=2,$PC=\sqrt{6}$,边PC上的高AM=$\sqrt{P{A^2}-P{M^2}}=\frac{{\sqrt{10}}}{2}$,
所以△PAC的面积${S_{△PAC}}=\frac{1}{2}PC•AM=\frac{1}{2}×\sqrt{6}×\frac{{\sqrt{10}}}{2}=\frac{{\sqrt{15}}}{2}$,…(9分)
设点D到平面PAC的距离为h,
由VD-PAC=VP-ACD得     $\frac{1}{3}{S_{△PAC}}•h=\frac{1}{3}{S_{△ACD}}•PO$…(10分)
,又${S_{△ACD}}=\frac{{\sqrt{3}}}{4}×{2^2}=\sqrt{3}$,所以$\frac{1}{3}×\frac{{\sqrt{15}}}{2}•h=\frac{1}{3}×\sqrt{3}×\sqrt{3}$,…(11分)
解得$h=\frac{{2\sqrt{15}}}{5}$,所以点D到平面PAM的距离为$\frac{{2\sqrt{15}}}{5}$.…(12分)

点评 本题考查直线与平面平行的判定定理的应用,几何体的体积的求法,点线面距离的求法,等体积的方法的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知一条直线l和它上方的一个点F,点F到l的距离是2.一条曲线也在l的上方,它上面的每一点到F的距离的差都是2,建立适当的坐标系,求这条曲线的方程.(用两种方法)
方法一:以直线l所在直线为x轴,过F与l垂直的直线为y轴
方法二:以过F与l垂直的直线为y轴,过F与y轴垂直的直线为x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={x|-1≤x≤2},B={x|log2x≤2},则A∩B=(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线的方程为16x2-9y2=144.
(1)求该双曲线的实半轴长,虚半轴长,半焦距长,离心率;
(2)求该双曲线的焦点坐标,顶点坐标,渐进线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在多面体ABCDE中,AB⊥平面ACD,DE∥AB,AC=AD=CD=DE=2,F为CD的中点.
(Ⅰ)求平面ABC和平面CDE所成角的大小;
(Ⅱ)求点A到平面BCD的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=x3+3ax2+(a2+3a-1)x+a在x=-1时取得极值,则a=1,2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-4x+1,x>0}\\{-1+{{log}_2}(-x),x<0}\end{array}}$,若函数g(x)=f(x)-a有三个不同的零点x1,x2,x3,则x1+x2+x3的取值范围是(  )
A.(0,4)B.(-4,0)C.$(0,\frac{15}{4})$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且${S_n}-1=3({a_n}-1),n∈{Z^+}$.
(1)求出数列{an}的通项公式;
(2)设数列{bn}满足${a_{n-1}}={(\frac{3}{2})^{{a_n}•{b_n}}}$,若bn≤t对于任意正整数n都成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法中正确的个数是(  )
①最大的7进制三位数是999(7)
②110110110(2)=5036(9)
③秦九韶算法的优点是减少了乘法运算的次数;
④更相减损术是计算最大公约数的方法;
⑤用欧几里得算法计算54和78最大公约数需进行3次除法.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案