精英家教网 > 高中数学 > 题目详情
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点.
(1)求椭圆C的方程;
(2)设直线斜率为1,求线段的长;
(3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.
(1)椭圆C的方程;(2)线段的长为;(3)的取值范围是.

试题分析:(1)根据椭圆的右焦点为F(1,0),点A(2,0)在椭圆C上,代入即可求得椭圆C的方程;(2)先用点斜式写出直线方程,再和椭圆方程联立,用弦长公式即可求出线段的长为;(3)当轴时,显然.当轴不垂直时,可设直线的方程为,把直线方程与椭圆方程联立,设直线与椭圆的两个交点为,表示出,联立即可求出的取值范围.
试题解析:(1)由题意:

所求椭圆方程为.                                            3分
(2)由题意,直线l的方程为:.


所以.                                       7分
(3)当轴时,显然.
与x轴不垂直时,可设直线的方程为.
消去y整理得.
,线段MN的中点为
.
所以
线段MN的垂直平分线方程为
在上述方程中令x=0,得.
时,;当时,.
所以,或.
综上,的取值范围是.                                     10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且的面积为3.
(1)求椭圆C的方程:
(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).

(1)试求顶点P的轨迹C1的方程;
(2)若动点C(x1,y1)在轨迹C1上,试求动点Q的轨迹C2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆=1(ab>0)的上,下两个顶点为AB,直线ly=-2,点P是椭圆上异于点AB的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1).

(1)求k1·k2的值;
(2)求MN的最小值;
(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1y2=1,椭圆C2C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点AB分别在椭圆C1C2上,=2,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P0(x0y0)在椭圆=1(ab>0)外,则过P0作椭圆的两条切线的切点为P1P2,则切点弦P1P2所在直线方程是=1.那么对于双曲线则有如下命题:若P0(x0y0)在双曲线=1(a>0,b>0)外,则过P0作双曲线的两条切线的切点为P1P2,则切点弦P1P2所在的直线方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的焦点在轴上,一个顶点为,其右焦点到直线的距离为,则椭圆的方程为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P为椭圆上一点,F1、F2为椭圆的左、右焦点,B为椭圆右顶点,若平分线与的平分线交于点,则       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线与椭圆有相同的焦点,点是两曲线的交点,且轴,则椭圆的离心率为         .

查看答案和解析>>

同步练习册答案