精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在四棱锥中,平面的中点,

(Ⅰ)求四棱锥的体积
(Ⅱ)若的中点,求证:平面平面
(Ⅲ)求二面角的大小。.
(Ⅰ) (Ⅱ)关键证明平面 (Ⅲ)

试题分析:解:(Ⅰ)在中,,∴……1分
中,,∴…………2分
…………3分
…………………………………………4分
(Ⅱ)∵平面,∴…………………………5分

平面              ……………………6分    
分别为中点,
   ∴平面 ……………………7分
平面,∴平面平面…………8分
(Ⅲ)取的中点,连结,则
平面,过
连接,则为二面角的平面角。……………………10分
的中点,
,又,∴
即二面角的大小为…………………………12分。
点评:对于比较规则的几何体,建立空间直角坐标系对解决问题有很好帮助,特别是求二面角。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,⊥平面=90°,,点上,点E在BC上的射影为F,且

(1)求证:
(2)若二面角的大小为45°,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是
A.PB⊥ADB.平面PAB⊥平面PBC
C.直线BC∥平面PAED.直线PD与平面ABC所成角为450

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,,中点,中点,且为正三角形.

(1)求证:平面.
(2)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知二面角αPQβ的大小为60°,点C为棱PQ上一点,AβAC=2,∠ACP=30°,则点A到平面α的距离为(      )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,EF分别是ABPD的中点.

(Ⅰ)求证:平面PCE 平面PCD
(Ⅱ)求四面体PEFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分) 如图,P—ABCD是正四棱锥,是正方体,其中 

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中点.

(1)求证:C1DAB1 ;
(2)当点FBB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。
 
(I)求三棱锥D1—ACE的体积;
(II)求异面直线D1E与AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。

查看答案和解析>>

同步练习册答案