精英家教网 > 高中数学 > 题目详情
4.设命题p:a>b>0的必要条件是$\frac{1}{a}$<$\frac{1}{b}$;命题q:y=sinx不是周期函数,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∨qD.p∨¬q

分析 先判定命题p,q的真假,再利用复合命题真假的判定方法即可得出.

解答 解:命题p:a>b>0⇒$\frac{1}{b}>\frac{1}{a}$,反之不成立,因此a>b>0的必要条件是$\frac{1}{a}$<$\frac{1}{b}$,是真命题;
命题q:由于y=sinx是周期函数,因此q是假命题.
则下列命题中为真命题的是p∨¬q.
故选:D.

点评 本题考查了复合命题真假的判定方法、不等式的性质、三角函数的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=ax-2其中a>0且a≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,设a1=a2=2,a3=4,若数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$为等差数列,则a5=48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.49${\;}^{lo{g}_{\frac{1}{7}}3}$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知p:$\left\{\begin{array}{l}{lg|x|≤1}\\{{2}^{x+2}≥1}\end{array}\right.$,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围(  )
A.(-∞,9]B.[9,+∞)C.(-∞,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.动圆M与定圆C1:x2+y2+6x=0外切,且内切于定圆C2:x2+y2-6x=40,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若关于x的方程[f(x)]3-a|f(x)|+2=0有两个不等实根,则实数a的取值范围是(  )
A.(0,1)B.(1,3)C.(-1,3)D.(3,∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上存在一点M,使得∠F1MF2=90°(F1,F2为椭圆的两个焦点),求椭圆的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-6x+c=0},只有一个元素,求实数c.

查看答案和解析>>

同步练习册答案