【题目】在下列向量组中,可以把向量 =(3,2)表示出来的是( )
A. =(0,0), =(1,2)
B. =(﹣1,2), =(5,﹣2)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(﹣2,3)
【答案】B
【解析】解:根据 , 选项A:(3,2)=λ(0,0)+μ(1,2),则 3=μ,2=2μ,无解,故选项A不能;
选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.
选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能.
选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.
故选:B.
【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某货轮匀速行驶在相距海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为),其他费用为每小时元,且该货轮的最大航行速度为海里/小时.
(1)请将从甲地到乙地的运输成本(元)表示为航行速度(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数的最小正周期为.
(1)求的值;
(2)将函数的图像向左平移个单位,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图像,求函数的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:3x+2y﹣1=0和l2:5x+2y+1=0的交点为A
(1)若直线l3:(a2﹣1)x+ay﹣1=0与l1平行,求实数a的值;
(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.
(1)若a=1.5,问:观察者离墙多远时,视角θ最大?
(2)若tanθ= ,当a变化时,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于、两点.
(1)求椭圆的方程;
(2)若直线与圆相切,探究是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com