精英家教网 > 高中数学 > 题目详情

【题目】已知中心在坐标原点的椭圆经过点,且点为其右焦点.

)求椭圆的标准方程

)是否存在平行于的直线,使得直线与椭圆有公共点,且直线的距离等于4?若存在,求出直线的方程;若不存在,请说明理由.

【答案】();()不存在

【解析】

试题分析:()设出椭圆的标准方程,利用椭圆的定义和焦点坐标求出有关参数值,进而得到椭圆的标准方程;()先假设存在符合题意的直线,并设出直线方程,联立直线与椭圆的方程,得到关于的一元二次方程,利用判别式为正和点到直线的距离公式进行求解

试题解析:)依题意,可设椭圆的方程为,且可知左焦点为

从而有,解得,又.

椭圆的标准方程为.

)假设存在符合题意的直线,其方程为.

.

直线与椭圆有公共点,,解得.

另一方面,直线的距离等于4,可得,从而.

由于符合题意的直线不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列是首项为0的递增数列,,满足:对于任意的总有两个不同的根,则的通项公式为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图如图所示则它的外接球表面积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,过作垂直于轴的直线交椭圆两点,且满足.

(1)求椭圆的离心率;

(2)过作斜率为的直线两点. 为坐标原点,若的面积为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形为等腰梯形,,且于点的中点.将沿着折起至的位置,得到如图所示的四棱锥.

1求证:平面

2若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业准备投入适当的广告费对产品进行促销在一年内预计销售量Q(万件)与广告费x(万元)之间的函数关系为Q= (x>1)已知生产该产品的年固定投入为3万元每生产1万件该产品另需再投入32万元若每件销售价为“年平均每件生产成本(生产成本不含广告费)150%”与“年平均每件所占广告费的50%”之和

(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(年利润=销售收入-成本)

(2)当年广告费为多少万元时企业的年利润最大?最大年利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照分成9组,制成了如图所示的频率分布直方图.

1求直方图中的值;

2设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;

3若该市政府希望使85%的居民每月的用水量不超过标准,估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线与椭圆的一个公共点,分别为该椭圆的左右焦点,设取得最小值时椭圆为

I求椭圆的方程;

II已知是椭圆上关于轴对称的两点,是椭圆上异于的任意一点,直线分别与轴交于点,试判断是否为定值,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低硕族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

120

0.6

第二组

195

第三组

100

0.5

第四组

0.4

第五组

30

0.3

第六组

15

0.3

(1)补全频率分布直方图并求的值(直接写结果);

(2)从年龄段在低碳族中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在岁的概率.

查看答案和解析>>

同步练习册答案