精英家教网 > 高中数学 > 题目详情

【题目】某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和列联表:

喜爱运动

不喜爱运动

总计

男生

30

女生

20

总计

50

1)求出列联表中的值;

2)是否有的把握认为喜爱运动与性别有关?:参考公式和数据:,(其中

0.500

0.100

0.050

0.010

0.001

0.455

2.706

3.841

6.635

10.828

【答案】12468122)有的把握认为喜爱运动与性别有关

【解析】

1)利用等高条形图中的数据求解即可;

(2)由(1),将数据代入公式求解,并与6.635比较即可.

1)由等高条形图可得:

,,,.

2,

所以有的把握认为喜爱运动与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点是直线上的动点,为定点,点的中点,动点满足,且,设点的轨迹为曲线.

1)求曲线的方程;

2)过点的直线交曲线两点,为曲线上异于的任意一点,直线分别交直线两点.是否为定值?若是,求的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】迈入2018年后,直播答题突然就火了.在16号的一场活动中,最终仅有23人平分100万,这23人可以说是“学霸”级的大神.随着直播答题的发展,平台“烧钱大战”模式的可持续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:

认为直播答题模式可持续

360

280

认为直播答题模式不可持续

240

120

(1)根据表格中的数据,能否在犯错误不超过的前提下,认为对直播答题模式的态度与性别有关系?

(2)已知在参与调查的1000人中,有20%曾参加答题游戏瓜分过奖金,而男性被调查者有15%曾参加游戏瓜分过奖金,求女性被调查者参与游戏瓜分过奖金的概率.

参考公式:

临界值表:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体中,,平面平面,且.

(1)证明:平面

(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.

1)求出2018年的利润Lx)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)

22018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,点,动点满足,点为线段的中点,抛物线上点的纵坐标为.

(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;

(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:

2)当时,不等式恒成立,求实数的最大值和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为______.

查看答案和解析>>

同步练习册答案