精英家教网 > 高中数学 > 题目详情
3.用清水漂洗衣服,每次能洗去污垢的$\frac{2}{3}$,若要使存留污垢不超过原有的1%,则至少需要漂洗5次.

分析 当漂洗n次时,存留污垢=$(1-\frac{2}{3})^{n}$,解出$(\frac{1}{3})^{n}$≤1%,即可得出.

解答 解:由题意可得:当漂洗n次时,存留污垢=$(1-\frac{2}{3})^{n}$,
要使$(\frac{1}{3})^{n}$≤1%,
则n≥5.
故答案为:5.

点评 本题考查了指数幂的运算性质、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知集合M={2,0,b},N={2,0,b2},其中M=N,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知关于方程x2+2(m-1)x-2m=0的两根都在[-2,2)内.则实数m的取值范围是什么?
(2)关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,则实数k的取值范围是什么?
(3)方程x2-(a+4)x-2a2+5a+3=0的两根都在区间[-1,3]上,求实数m的取值范围.
(4)方程x2-2ax+4=0的两根均大于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由直线x=1,x=2,y=0与曲线y=$\frac{1}{x}$所围成的曲边梯形,将区间[1,2]等分成4份,将曲边梯形较长的边近似看作高,则曲边梯形的面积是(  )
A.$\frac{9}{20}$B.$\frac{37}{60}$C.$\frac{319}{420}$D.$\frac{259}{420}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,则f(f(x))≤3的解集为(  )
A.(-∞,-3]B.[-3,+∞)C.(-∞,$\sqrt{3}$]D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益每件单价应降低多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,点$A(\frac{{\sqrt{15}}}{2},\frac{1}{2})$是以F1F2为直径的圆与双曲线的一交点.
(1)求双曲线的方程;
(2)若P为该双曲线上任意一点,直线PF1、PF2分别交双曲线于M、N两点,$\overrightarrow{P{F_1}}={λ_1}\overrightarrow{{F_1}M}({λ_1}≠-1)$,$\overrightarrow{P{F_2}}={λ_2}\overrightarrow{{F_2}N}({λ_2}≠-1)$,请判断λ12是否为定值,若是,求出该定值;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{lo{g}_{\frac{1}{2}}(x-3)}$的定义域是(3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{7}}}{4}$,短轴的一个端点到右焦点的距离为4.
(1)求椭圆的标准方程;
(2)若“椭圆的长半轴长为a,短半轴长为b时,则椭圆的面积是πab.”
请针对(1)中求得的椭圆,求解下列问题:
①若m,n∈R,且|m|≤4,|n|≤3,求点P(m,n)落在椭圆内的概率;
②若m,n∈Z,且|m|≤4,|n|≤3,求点P(m,n)落在椭圆内的概率.

查看答案和解析>>

同步练习册答案