精英家教网 > 高中数学 > 题目详情

【题目】已知函数其中

1)当,求曲线在点处的切线方程;

2)当,求函数的单调区间;

3)若对于恒成立,的最大值.

【答案】12的单调递增区间为,单调递减区间为.3

【解析】

1)根据导数的几何意义,求出切线斜率,由点斜式方程即可写出切线方程;

2)求出导数,依据上单调递增,且,分别解不等式以及,即可求出函数的单调增区间和减区间;

3)由题意得上恒成立,设,用导数讨论函数的单调性,求出最小值,可得.再设,求出函数的最大值,即为的最大值.

1)由,得

所以

所以曲线在点处的切线方程为

2)由,得

因为,且 上单调递增,所以

得,

所以函数上单调递增

得,

所以函数上单调递减.

综上,函数的单调递增区间为,单调递减区间为

3)由,得上恒成立.

,得,().

随着变化,的变化情况如下表所示:

0

极小值

所以上单调递减,在上单调递增.

所以函数的最小值为

由题意,得,即

,则

因为当时, 时,

所以上单调递增,在上单调递减.

所以当时,

所以当,即时,有最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点P到直线的距离与到点的距离之比为.

(1)求动点P的轨迹

(2)直线与曲线交于不同的两点A,B(A,B轴的上方)

①当A为椭圆与轴的正半轴的交点时,求直线的方程;

②对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公平正义是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?

某单位准备通过考试(按照高分优先录取的原则)录用名,其中个高薪职位和个普薪职位.实际报名人数为名,考试满分为. 考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:

试结合此频率分布直方图估计:

(1)此次考试的中位数是多少分(保留为整数)?

(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在矩形中,为边的中点,将沿直线折起到平面)的位置,为线段的中点.

1)求证:平面

2)已知,当平面平面时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,设点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对一切正实数,不等式恒成立,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,为棱的中点,动点在平面及其边界上运动,总有,则动点的轨迹为(

A.两个点B.线段C.圆的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.

1)根据条形统计图,估计本届高三学生本科上线率.

2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.

i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);

ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.

可能用到的参考数据:取.

查看答案和解析>>

同步练习册答案