精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,底面,且
的中点,且交于点.
(1)求证:平面
(2)当时,求三棱锥的体积.
(1)详见解析;(2).

试题分析:(1)由已知条件平面得到,再由已知条件得到,从而得到平面,进而得到,利用等腰三角形三线合一得到,结合直线与平面垂直的判定定理得到平面,于是得到,结合题中已知条件以及直线与平面垂直的判定定理得到平面;(2)利用(1)中的结论平面,然后以点为顶点,以为高, 结合等体积法求出三棱锥的体积.
(1)证明:底面,又易知
平面
的中点,
平面
又已知
平面
(2)平面平面


平面



.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC=3,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:DC∥平面PAB;
(2)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.

(1)求证:DC平面ABC;     
(2)设,求三棱锥A-BFE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.

(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为的正方体内切一球,该球的表面积为(    )
A.B.2C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图1,一个正三棱柱容器,底面边长为a,高为2a,内装水若干.将容器放倒,把一个侧面作为底面,如图2,这时水面恰好为中截面,则图1中容器内水面的高度为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的.

有如下结论:
在图中的度数和它表示的角的真实度数都是

所成的角是
④若,则用图示中这样一个装置盛水,最多能盛的水.
其中正确的结论是             (请填上你所有认为正确结论的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为          .

查看答案和解析>>

同步练习册答案