分析 把已知的递推式两边同时除以3n+1,得到数列{$\frac{{a}_{n}}{{3}^{n}}$}构成以$\frac{1}{3}$为首项,以$\frac{1}{3}$为公差的等差数列,求出{$\frac{{a}_{n}}{{3}^{n}}$}的通项公式后得答案.
解答 解:由an+1=3an+3n,得
$\frac{{a}_{n+1}}{{3}^{n+1}}-\frac{{a}_{n}}{{3}^{n}}=\frac{1}{3}$,
∵a1=1,∴$\frac{{a}_{1}}{{3}^{1}}=\frac{1}{3}$,
则数列{$\frac{{a}_{n}}{{3}^{n}}$}构成以$\frac{1}{3}$为首项,以$\frac{1}{3}$为公差的等差数列,
则$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{3}+\frac{1}{3}(n-1)$=$\frac{n}{3}$,
∴${a}_{n}=n•{3}^{n-1}$.
点评 本题考查数列递推式,考查了等差关系的确定,考查等差数列的通项公式的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 求有关x的方程ax2+bx+c=0的根 | B. | 求函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{x,x<0}\end{array}\right.$的值. | ||
C. | 求1+4+7+10+13的值 | D. | 解不等式ax+b>0(a≠0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 10 | B. | 15 | C. | 20 | D. | 25 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com