精英家教网 > 高中数学 > 题目详情

函数f(x)=6cos2sin ωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.

(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=,且x0,求f(x0+1)的值.

(1)ω=, [-2,2]
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3 cm,周期为3 s,且物体向右运动到A点(距平衡位置最远处)开始计时.(1)求物体离开平衡位置的位移x(cm)和时间t(s)之间的函数关系式;(2)求该物体在t=5 s时的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·大庆模拟)已知向量a=(,cosωx),b=(sinωx,1),函数f(x)=a·b,且最小正周期为4π.
(1)求ω的值.
(2)设α,β∈,f=,f=-,求sin(α+β)的值.
(3)若x∈[-π,π],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如图所示.
(1)求函数的解析式,并写出 的单调减区间;
(2)已知的内角分别是A,B,C,若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•天津)已知函数
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)化简:
(2)已知tan α=3,计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为奇函数,且相邻两对称轴间的距离为
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的周期和单调递增区间;
(2)设A,B,C为ABC的三个内角,若AB=1, ,求s1nB的值.

查看答案和解析>>

同步练习册答案