精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,平面,底面是正方形,中点.

1)求证:平面

2)求点到平面的距离;

3)求二面角的余弦值.

【答案】(1)见解析;(2);(3)

【解析】

1)由已知条件推导出,由此得到平面,从而能够证明平面

2)过点于点,平面平面,从而得到线段的长度就是点到平面的距离,由此能求出结果.

3)以点为坐标原点,分别以直线轴,轴,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

1)证明:平面

正方形中,平面

平面的中点,

平面

2)过点于点,由(1)知平面平面

又平面平面平面

线段的长度就是点到平面的距离,

.

3)以点为坐标原点,分别以直线轴,轴,轴,建立如图所示的空间直角坐标系,由题意知:

设平面的法向量为,则

,令,得到

,且平面

平面的一个法向量为.设二面角的平面角为

.二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为,点在椭圆上.

1)求椭圆的方程;

2)若AB是椭圆上位于x轴上方的两点,直线与直线交于点P,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块多边形的花园,它的水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中米,,则这块花园的面积为______平方米.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}各项均不相同,a1=1,定义,其中nk∈N*.

(1)若,求

(2)若bn+1(k)=2bn(k)对均成立,数列{an}的前n项和为Sn

(i)求数列{an}的通项公式;

(ii)若kt∈N*,且S1SkS1StSk成等比数列,求kt的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4名大学生随机安排到A,B,C,D四个公司实习.

(1)求4名大学生恰好在四个不同公司的概率;

(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)过点e是自然对数的底数)作函数图象的切线l,求直线l的方程;

2)求函数在区间)上的最大值;

3)若,且对任意恒成立,求k的最大值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,记.

1)求b1b2的值;

2)证明:数列{bn}是等比数列;

3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中,,沿对角线折起至,使得二面角,连结

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案