精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f( )??
C.f(0)>2f(
D.f(0)> f(

【答案】A
【解析】解:构造函数g(x)= , 则g′(x)= = (f′(x)cosx+f(x)sinx),
∵对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0,
∴g′(x)>0,即函数g(x)在x∈(﹣ )单调递增,
则g(﹣ )<g(﹣ ),即
,即 f(﹣ )<f(﹣ ),故A正确.
g(0)<g( ),即
∴f(0)<2f( ),
故选:A.
根据条件构造函数g(x)= ,求函数的导数,利用函数的单调性和导数之间的关系即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 (n∈N*)的展开式中第五项的系数与第三项的系数的比是10:1.
(1)求在展开式中含x 的项;
(2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|+2x.
(1)若函数f(x)在R上是增函数,求实数a的取值范围;
(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;
(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表:则方程g(f(x))=x的解集为(

x

1

2

3

f(x)

2

3

1

x

1

2

3

g(x)

3

2

1


A.{1}
B.{2}
C.{3}
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx﹣ )+1(A>0,ω>0)的最大值为3,其图象的相邻两条对称轴之间的距离为
(1)求函数f(x)对称中心的坐标;
(2)求函数f(x)在区间[0, ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=x2﹣(2a+1)x+alnx (Ⅰ) 当a=1时,求函数g(x)的单调增区间;
(Ⅱ) 求函数g(x)在区间[1,e]上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设f(x)=g(x)+4x﹣x2﹣2lnx,
证明: (n≥2).(参考数据:ln2≈0.6931)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m是实数,f(x)=m﹣ (x∈R)
(1)若函数f(x)为奇函数,求m的值;
(2)试用定义证明:对于任意m,f(x)在R上为单调递增函数;
(3)若函数f(x)为奇函数,且不等式f(k3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x+2,g(1)=﹣1
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=ax2lnx

(Ⅰ)当a=时,判断fx)的单调性;(Ⅱ)设fx≤x3+4xlnx,在定义域内恒成立,求a的取值范围。

查看答案和解析>>

同步练习册答案