精英家教网 > 高中数学 > 题目详情

已知定义在R上的二次函数R(x)=ax2+bx+c满足,且R(x)的最小值为0,函数h(x)=lnx,又函数f(x)=h(x)-R(x).

(Ⅰ)求f(x)的单调区间;

(Ⅱ)当a≤时,若x0∈[1,3],求f(x0)的最小值;

(Ⅲ)若二次函数R(x)图象过(4,2)点,对于给定的函数f(x)图象上的点A(x1,y1),当时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>2),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

答案:
解析:

  解:(Ⅰ)

  可得

  又在x=0时取得最小值0,

  

  令

  当x变化时,的变化情况如下表:

  所以,的单调递增区间是(0,),的单调递减区间是(,+)  5分

  (Ⅱ)时,≥1,

  时,的最小值为中的较小者  7分

  又

  时,的最小值

  当时,的最小值  9分

  (Ⅲ)证明:若二次函数图象过(4,2)点,则,所以

  令

  由(Ⅰ)知在(0,2)内单调递增,

  故  11分

  取

  所以存在

  即存在

  所以函数图象上存在点B()(),使A、B连线平行于x轴  14分

  (说明:的取法不唯一,只要满足>2,且即可)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的二次函数f(x)=ax2-2bx+3
(1)如果a是集合{1,2,3,4}中的任一元素,b是集合{0,2,3}中的任一元素,试求函数f(x)在区间[1,+∞)上单调递增的概率,
(2)如果a是从区间[1,4]上任取一个数,b是从区间[0,3]上任取一个数,试求函数f(x)在区间[1,+∞)上单调递增的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的二次函数R(x)=ax2+bx+c满足2R(-x)-2R(x)=0,且R(x)的最小值为0,函数h(x)=lnx,又函数f(x)=h(x)-R(x).
(I)求f(x)的单调区间;  
(II)当a≤
1
2
时,若x0∈[1,3],求f(x0)的最小值;
(III)若二次函数R(x)图象过(4,2)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
3
2
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>2),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的二次函数R(x)=ax2+bx(a>0)是偶函数,函数f(x)=2lnx-R(x).
(I)求f(x)的单调区间;  
(II)当a≤1时,若x0∈[1,2],求f(x0)的最大值;
(III)若二次函数R(x)图象过(1,1)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
1e
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>1),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三第二次质检理科数学复习卷(二) 题型:解答题

.已知定义在R上的二次函数满足,且的最小值

为0,函数,又函数

(I)求的单调区间;  (II)当时,若,求的最小值;

(III)若二次函数图象过(4,2)点,对于给定的函数图象上的点A(),

时,探求函数图象上是否存在点)(),使连线平行于轴,并说明理由。(参考数据:e=2.71828…)

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省日照市高三上学期测评理科数学试卷 题型:解答题

已知定义在R上的二次函数满足,且的最小值为0,函数,又函数

(I)求的单调区间;

(II)当时,若,求的最小值;

(III)若二次函数图象过(4,2)点,对于给定的函数图象上的点A(),当时,探求函数图象上是否存在点B()(),使A、B连线平行于x轴,并说明理由。

(参考数据:e=2.71828…)

 

查看答案和解析>>

同步练习册答案