精英家教网 > 高中数学 > 题目详情

【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图

(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: =9.32, yi=40.17, =0.55, ≈2.646.
参考公式:相关系数r= 回归方程 = + t 中斜率和截距的最小二乘估计公式分别为: = =

【答案】解:(Ⅰ)由折线图看出,y与t之间存在较强的正相关关系,∵ =9.32, yi=40.17, =0.55,
∴r≈ ≈0.993,
∵0.993>0.75,
故y与t之间存在较强的正相关关系;
(Ⅱ)由 ≈1.331及(Ⅰ)得 = ≈0.103,
=1.331﹣0.103×4=0.92.
所以,y关于t的回归方程为: =0.92+0.10t.
将2017年对应的t=10代入回归方程得: =0.92+0.10×10=1.92
所以预测2017年我国生活垃圾无害化处理量将约1.92亿吨
【解析】(Ⅰ)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(Ⅱ)根据已知中的数据,求出回归系数,可得回归方程,2017年对应的t值为10,代入可预测2017年我国生活垃圾无害化处理量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若在点处的切线与直线垂直,求实数的值;

(2)求函数的单调区间;

(3)讨论函数在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且cosC=
(1)求角B的大小;
(2)若BD为AC边上的中线,cosA= ,BD= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log (﹣x+1).
(1)求f(x)的解析式;
(2)若f(a﹣1)<﹣1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的左右焦点F1、F2 , 离心率为 ,双曲线方程为 =1(a>0,b>0),直线x=2与双曲线的交点为A、B,且|AB|=
(Ⅰ)求椭圆与双曲线的方程;
(Ⅱ)过点F2的直线l与椭圆交于M、N两点,交双曲线与P、Q两点,当△F1MN(F1为椭圆的左焦点)的内切圆的面积取最大值时,求△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,g(x)=
(1)当1≤x<2时,求g(x);
(2)当x∈R时,求g(x)的解析式,并画出其图象;

(3)求方程xf[gx]=2g[f(x)]的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= + 的图象关于y轴对称,且a>0.
(1)求a的值;
(2)求f(x)在[0,2]的值域.

查看答案和解析>>

同步练习册答案