精英家教网 > 高中数学 > 题目详情
设函数f(x)定义在R上,f(0)≠0,且对于任意a,b∈R,都有f(a+b)+f(a-b)=2f(a)f(b).
(1)求证:f(x)为偶函数;
(2)若存在正数m使f(m)=0,求证:f(x)为周期函数.
分析:(1)先根据f(a+b)+f(a-b)=2f(a)f(b)得到f(-x)=f(x),从而很容易得到函数f(x)的奇偶性.
(2)问题就是要证:存在T≠0,使f(x+T)=f(x)恒成立,可T为何值呢?T与 m又有何关系?不难发现一个特殊函数f(x)=cosx满足题设条件,且cos0=1,而f(
π
2
)=0
,又y=cosx为周期函数且周期为2π,它是
π
2
的4倍,于是猜想f(x)是以4m为周期的周期函数.故在条件式中令a=m,b=x,得到证明.
解答:解:(1)令a=b=0,得2f(0)=2f2(0).
∵f(0)≠0,∴f(0)=1.
又令a=0,b=x,则f(x)+f(-x)=2f(0)f(x),
∴f(-x)=f(x),即f(x)为偶函数.
(2)问题就是要证:存在T≠0,使f(x+T)=f(x)恒成立,可T为何值呢?T与 m又有何关系?不难发现一个特殊函数f(x)=cosx满足题设条件,且cos0=1,而f(
π
2
)=0
,又y=cosx为周期函数且周期为2π,它是
π
2
的4倍,于是猜想f(x)是以4m为周期的周期函数.故在条件式中令
a=m,b=x,则f(m+x)+f(m-x)=2f(m)f(x)=0,故f(m+x)=-f(m-x).
令x取m+x,则
f(2m+x)=-f(-x)=-f(x).
∴f(4m+x)=-f(2m+x)=-(-f(x))=f(x),得证.
点评:本题主要考查了抽象函数及其应用.对抽象的问题或一般性难以解决的问题,不妨剖析一个特殊情形,进而可望从结论或方法上得到某种启发,亦可构造一个满足条件的特殊模型,从中发现寓于一般情形之中的隐含性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、设函数f(x)定义在R上,且f(x+1)是偶函数,f(x-1)是奇函数,则f(2003)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则f(-2),f(0),f(3)从小到大的顺序是
f(0)<f(3)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=
1
x
,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与g(
1
x
)
的大小关系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在R上,对于任意实数m、n,恒有f(m+n)=f(m)?f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,f(x)>1;
(2)设集合A={(x,y)|f(x2)?f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范围.

查看答案和解析>>

同步练习册答案