【题目】如图所示,在正方体ABCDA1B1C1D1中,M,N分别是棱AB,CC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:
①平面MB1P⊥ND1;
②平面MB1P⊥平面ND1A1;
③△MB1P在底面ABCD上的射影图形的面积为定值;
④△MB1P在侧面DD1C1C上的射影图形是三角形.
其中正确的命题序号是( )
A. ①B. ②③
C. ①③D. ②④
科目:高中数学 来源: 题型:
【题目】某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲者都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷分数情况如下表:
用分层抽样的方法从这一天的所有问卷中抽取300份进行统计,结果如下表:
(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出5人进行家访,求这5人中选择的是理综讲座的人数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:
(1)仓库顶部面积的最大允许值是多少?
(2)为使达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体,底面ABFE是边长为2的正方形,DE与CF均垂直于平面ABFE,且.
(1)证明:BE∥平面ACD;
(2)求三棱锥B﹣ACD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABCD中,侧面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M为PC的中点.
(1)求证:PC⊥AD.
(2)在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校想了解高二数学成绩在学业水平考试中的情况,从中随机抽出人的数学成绩作为样本并进行统计,频率分布表如下表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | |||
第2组 | |||
第3组 | |||
第4组 | |||
第5组 | |||
合计 |
(1)据此估计这次参加数学考试的高二学生的数学平均成绩;
(2)从这五组中抽取人进行座谈,若抽取的这人中,恰好有人成绩为分,人成绩为分,人成绩为分,人成绩为分,求这人数学成绩的方差;
(3)从人的样本中,随机抽取测试成绩在内的两名学生,设其测试成绩分别为,.
(i)求事件“”的概率;
(ii)求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,,点为棱的中点,点为线段上一动点.
(Ⅰ)求证:当点为线段的中点时,平面;
(Ⅱ)设,试问:是否存在实数,使得平面与平面所成锐二面角的余弦值为?若存在,求出这个实数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com