精英家教网 > 高中数学 > 题目详情

“点动成线,线动成面,面动成体”。如图,轴上有一条单位长度的线段,沿着与其垂直的轴方向平移一个单位长度,线段扫过的区域形成一个二维方体(正方形),再把正方形沿着与其所在的平面垂直的轴方向平移一个单位长度,则正方形扫过的区域形成一个三维方体(正方体)。请你设想存在四维空间,将正方体向第四个维度平移得到四维方体,若一个四维方体有个顶点,条棱,个面,则的值分别为  (      )

A.        B.        C.        D.

 

【答案】

A

【解析】

试题分析:依题意,线段AB平移到CD位置后,可形成正方形,它有四个顶点、四条棱(边)、一个面;正方形平移到正方形位置后,可形成正方体,它有8个顶点、12条棱、6个面;

把正方体沿着与x轴、y轴、z轴都垂直的第四维方向进行平移得到四维方体后,

原来的8个顶点在平移后形成新的8个顶点,所以四维方体就共有8+8=16个顶点;

原先的8个顶点在平移的过程又形成新的8条棱,所以四维方体就共有12+12+8=32条棱;

正方体的12条棱在平移的过程都会形成一个新的面,所以四维方体就共有6+6+12=24个面;正方体的6个面在平移的过程中又各会形成一个正方体,所以四维方体中就包含有1+1+6=8个正方体.

考点:本小题主要考查类比推理.

点评:本题考查利用类比推理来说明空间中点线面之间的形成关系,解题的关键是理解点线面之间的:点动成线,线动成面,面动成体.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“点动成线,线动成面,面动成体”.如图,x轴上有一条单位长度的线段AB,沿着与其垂直的y轴方向平移一个单位长度,线段扫过的区域形成一个二维方体(正方形ABCD),再把正方形沿着与其所在的平面垂直的z轴方向平移一个单位长度,则正方形扫过的区域形成一个三维方体(正方体ABCD-A1B1C1D1).请你设想存在四维空间,将正方体向第四个维度平移得到四维方体,若一个四维方体有m个顶点,n条棱,p个面,则m,n,p的值分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

“点动成线,线动成面,面动成体”.如图,x轴上有一条单位长度的线段AB,沿着与其垂直的y轴方向平移一个单位长度,线段扫过的区域形成一个二维方体(正方形ABCD),再把正方形沿着与其所在的平面垂直的z轴方向平移一个单位长度,则正方形扫过的区域形成一个三维方体(正方体ABCD-A1B1C1D1).请你设想存在四维空间,将正方体向第四个维度平移得到四维方体,若一个四维方体有m个顶点,n条棱,P个面,则n,m,p的值分别为
16,32,24
16,32,24

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建厦门双十中学高三考前热身理数试卷 题型:填空题

“点动成线,线动成面,面动成体”。如图,轴上有一条单位长度的线段,沿着与其垂直的轴方向平移一个单位长度,线段扫过的区域形成一个二维方体(正方形),再把正方形沿着与其所在的平面垂直的轴方向平移一个单位长度,则正方形扫过的区域形成一个三维方体(正方体)。请你设想存在四维空间,将正方体向第四个维度平移得到四维方体,若一个四维方体有个顶点,条棱,个面,则的值分别为   ▲ 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明一中高二(下)第一次月考数学试卷(理科)(解析版) 题型:选择题

“点动成线,线动成面,面动成体”.如图,x轴上有一条单位长度的线段AB,沿着与其垂直的y轴方向平移一个单位长度,线段扫过的区域形成一个二维方体(正方形ABCD),再把正方形沿着与其所在的平面垂直的z轴方向平移一个单位长度,则正方形扫过的区域形成一个三维方体(正方体ABCD-A1B1C1D1).请你设想存在四维空间,将正方体向第四个维度平移得到四维方体,若一个四维方体有m个顶点,n条棱,p个面,则m,n,p的值分别为( )

A.16,32,24
B.16,32,20
C.16,24,20
D.24,48,36

查看答案和解析>>

同步练习册答案