精英家教网 > 高中数学 > 题目详情

【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.

1)求圆O的方程;

2)圆Ox轴交于EF两点,圆O内的动点D使得DEDODF成等比数列,求的取值范围.

【答案】1x2+y2=2 2[10

【解析】

1)化简圆M的方程为:x2+y22x2y60,为标准方程,求出圆心和半径,判定圆心O在圆M内部,因而内切,用|MN|Rr,求圆O的方程;

2)根据圆Ox轴交于EF两点,圆内的动点D使得|DE||DO||DF|成等比数列,列出关系,再求的取值范围;

1)圆M的方程可整理为:(x12+y-12=8

故圆心M11),半径R=2

O的圆心为O00),

因为|MO|=2,所以点O在圆M内,

故圆O只能内切于圆M

设其半径为r.因为圆O内切于圆M

所以有:|MO|=|R-r|,即=|2r|,解得r=r=3(舍去);

所以圆O的方程为x2+y2=2

2)由题意可知:E0),F0).

Dxy),由|DE||DO||DF|成等比数列,

|DO|2=|DE|×|DF|

即:×=x2+y2

整理得:x2y2=1

=yy=x2+y22=2y21

由于点D在圆N内,

故有,由此得y2

的取值范围是[10).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A20),B04),且AC=BC,则△ABC的欧拉线的方程为( )

A.x+2y+3=0B.2x+y+3=0C.x﹣2y+3=0D.2x﹣y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为且对任意的实数都有是自然对数的底数),且若关于的不等式的解集中恰有两个负整数则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCDA1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:BQD1三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数满足

1)求函数的解析式;

2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;

3)若函数,是否存在实数,使函数上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列判断正确的是(

A.为奇函数

B.对任意,,则有

C.对任意,则有

D.若函数有两个不同的零点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其最小正周期为

(1)求 的表达式;

(2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长到原来的倍(纵坐标不变),得到函数 的图象若关于 的方程 在区间 上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在P地正西方向8kmA处和正东方向1kmB处各有一条正北方向的公路ACBD,现计划在ACBD路边各修建一个物流中心EF,为缓解交通压力,决定修建两条互相垂直的公路PEPF,设

为减少对周边区域的影响,试确定EF的位置,使的面积之和最小;

为节省建设成本,求使的值最小时AEBF的值.

查看答案和解析>>

同步练习册答案