精英家教网 > 高中数学 > 题目详情
11.f(x-1)=x2-2x,则$f(\sqrt{2})$=1.

分析 直接利用函数的解析式求解函数值即可.

解答 解:f(x-1)=x2-2x,则$f(\sqrt{2})$=f[($\sqrt{2}+1$)-1]=$(\sqrt{2}+1)$2-2$(\sqrt{2}+1)$=3+2$\sqrt{2}-2\sqrt{2}-2$=1.
故答案为:1.

点评 本题考查函数的解析式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$+$\overrightarrow{b}$=(1,$\sqrt{2}$),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知tanx=$\sqrt{3}$,求x的取值集合;
(2)在单位圆中画出满足sinα=$\frac{1}{2}$的角α的终边,并作出其正弦线、余弦线和正切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的首项al=1,且对任意n∈N*,an与an+1恰为方程x2-bnx+2n=0的两个根.
(1)求数列(an}和数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知实数数列{an}满足:an+2=|an+1|-an(n=1,2,…),a1=a,a2=b,记集合M={an|n∈N*}.
(Ⅰ)若a=1,b=2,用列举法写出集合M;
(Ⅱ)若a<0,b<0,判断数列{an}是否为周期数列,并说明理由;
(Ⅲ)若a≥0,b≥0,且a+b≠0,求集合M的元素个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)是定义在R上的函数,且满足f(x+2)=f(x+1)-f(x),如果f(1)=lg$\frac{3}{2}$,f(2)=lg15,则f(2016)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3-$\frac{b}{x}$+c(a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是(  )
A.-2和2B.-3和5C.6和2D.3和4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC内接于单位圆,则长为sinA、sinB、sinC的三条线段(  )
A.能构成一个三角形,其面积大于△ABC面积的$\frac{1}{4}$
B.能构成一个三角形,其面积等于△ABC面积的$\frac{1}{4}$
C.能构成一个三角形,其面积小于△ABC面积的$\frac{1}{4}$
D.不一定能构成三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.当x∈(2,+∞)时,函数y=lg(ax-1)有意义.求实数a的取值范围.

查看答案和解析>>

同步练习册答案